25,865 research outputs found

    Experimental design trade-offs for gene regulatory network inference: an in silico study of the yeast Saccharomyces cerevisiae cell cycle

    Get PDF
    Time-series of high throughput gene sequencing data intended for gene regulatory network (GRN) inference are often short due to the high costs of sampling cell systems. Moreover, experimentalists lack a set of quantitative guidelines that prescribe the minimal number of samples required to infer a reliable GRN model. We study the temporal resolution of data vs quality of GRN inference in order to ultimately overcome this deficit. The evolution of a Markovian jump process model for the Ras/cAMP/PKA pathway of proteins and metabolites in the G1 phase of the Saccharomyces cerevisiae cell cycle is sampled at a number of different rates. For each time-series we infer a linear regression model of the GRN using the LASSO method. The inferred network topology is evaluated in terms of the area under the precision-recall curve AUPR. By plotting the AUPR against the number of samples, we show that the trade-off has a, roughly speaking, sigmoid shape. An optimal number of samples corresponds to values on the ridge of the sigmoid

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Inferring Gene Regulatory Networks from Time Series Microarray Data

    Get PDF
    The innovations and improvements in high-throughput genomic technologies, such as DNA microarray, make it possible for biologists to simultaneously measure dependencies and regulations among genes on a genome-wide scale and provide us genetic information. An important objective of the functional genomics is to understand the controlling mechanism of the expression of these genes and encode the knowledge into gene regulatory network (GRN). To achieve this, computational and statistical algorithms are especially needed. Inference of GRN is a very challenging task for computational biologists because the degree of freedom of the parameters is redundant. Various computational approaches have been proposed for modeling gene regulatory networks, such as Boolean network, differential equations and Bayesian network. There is no so called golden method which can generally give us the best performance for any data set. The research goal is to improve inference accuracy and reduce computational complexity. One of the problems in reconstructing GRN is how to deal with the high dimensionality and short time course gene expression data. In this work, some existing inference algorithms are compared and the limitations lie in that they either suffer from low inference accuracy or computational complexity. To overcome such difficulties, a new approach based on state space model and Expectation-Maximization (EM) algorithms is proposed to model the dynamic system of gene regulation and infer gene regulatory networks. In our model, GRN is represented by a state space model that incorporates noises and has the ability to capture more various biological aspects, such as hidden or missing variables. An EM algorithm is used to estimate the parameters based on the given state space functions and the gene interaction matrix is derived by decomposing the observation matrix using singular value decomposition, and then it is used to infer GRN. The new model is validated using synthetic data sets before applying it to real biological data sets. The results reveal that the developed model can infer the gene regulatory networks from large scale gene expression data and significantly reduce the computational time complexity without losing much inference accuracy compared to dynamic Bayesian network

    Learning stable and predictive structures in kinetic systems: Benefits of a causal approach

    Get PDF
    Learning kinetic systems from data is one of the core challenges in many fields. Identifying stable models is essential for the generalization capabilities of data-driven inference. We introduce a computationally efficient framework, called CausalKinetiX, that identifies structure from discrete time, noisy observations, generated from heterogeneous experiments. The algorithm assumes the existence of an underlying, invariant kinetic model, a key criterion for reproducible research. Results on both simulated and real-world examples suggest that learning the structure of kinetic systems benefits from a causal perspective. The identified variables and models allow for a concise description of the dynamics across multiple experimental settings and can be used for prediction in unseen experiments. We observe significant improvements compared to well established approaches focusing solely on predictive performance, especially for out-of-sample generalization
    • …
    corecore