7 research outputs found

    Preconditioning of weighted H(div)-norm and applications to numerical simulation of highly heterogeneous media

    Full text link
    In this paper we propose and analyze a preconditioner for a system arising from a finite element approximation of second order elliptic problems describing processes in highly het- erogeneous media. Our approach uses the technique of multilevel methods and the recently proposed preconditioner based on additive Schur complement approximation by J. Kraus (see [8]). The main results are the design and a theoretical and numerical justification of an iterative method for such problems that is robust with respect to the contrast of the media, defined as the ratio between the maximum and minimum values of the coefficient (related to the permeability/conductivity).Comment: 28 page

    HAZniCS -- Software Components for Multiphysics Problems

    Full text link
    We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of the paper is on the design and implementation of a pool of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue

    Well-posedness and discretization for a class of models for mixed-dimensional problems with high-dimensional gap

    Get PDF
    In this work, we show the underlying mathematical structure of mixed-dimensional models arising from the composition of graphs and continuous domains. Such models are becoming popular in applications, in particular, to model the human vasculature. We first discuss the model equations in the strong form, which describes the conservation of mass and Darcy's law in the continuum and network as well as the coupling between them. By introducing proper scaling, we propose a weak form that avoids degeneracy. Well-posedness of the weak form is shown through standard Babu\v ska--Brezzi theory. We also develop the mixed formulation finite-element method and prove its well-posedness. A mass-lumping technique is introduced to derive the two-point flux approximation (TPFA) type discretization as well, due to its importance in applications. Based on the Babu\v ska--Brezzi theory, error estimates can be obtained for both the finite-element scheme and the TPFA scheme. We also discuss efficient linear solvers for discrete problems. Finally, we present some numerical examples to verify the theoretical results and demonstrate the robustness of our proposed discretization schemes.acceptedVersio

    Fluid-Structure Interaction Problems in Hemodynamics:Parallel Solvers, Preconditioners, and Applications

    Get PDF
    In this work we aim at the description, study and numerical investigation of the fluid-structure interaction (FSI) problem applied to hemodynamics. The FSI model considered consists of the Navier-Stokes equations on moving domains modeling blood as a viscous incompressible fluid and the elasticity equation modeling the arterial wall. The fluid equations are derived in an arbitrary Lagrangian-Eulerian (ALE) frame of reference. Several existing formulations and discretizations are discussed, providing a state of the art on the subject. The main new contributions and advancements consist of: A description of the Newton method for FSI-ALE, with details on the implementation of the shape derivatives block assembling, considerations about parallel performance, the analytic derivation of the derivative terms for different formulations (conservative or not) and for different types of boundary conditions. The implementation and analysis of a new category of preconditioners for FSI (applicable also to more general coupled problems). The framework set up is general and extensible. The proposed preconditioners allow, in particular, a separate treatment of each field, using a different preconditioning strategy in each case. An estimate for the condition number of the preconditioned system is proposed, showing how preconditioners of this type depend on the coupling, and explaining the good performance they exhibit when increasing the number of processors. The improvement of the free (distributed under LGPL licence) parallel finite elements library LifeV. Most of the methods described have been implemented within this library during the period of this PhD and all the numerical tests reported were run using this framework. The simulation of clinical cases with patient-specific data and geometry, the comparison on simulations of physiological interest between different models (rigid, FSI, 1D), discretizations and methods to solve the nonlinear system. A methodology to obtain patient-specific FSI simulations starting from the raw medical data and using a set of free software tools is described. This pipeline from imaging to simulation can help medical doctors in diagnosis and decision making, and in understanding the implication of indicators such as the wall shear stress in the pathogenesis
    corecore