20 research outputs found

    Research on Hydraulics and River Dynamics

    Get PDF
    This Special Issue includes nine original contributions focused on river hydraulics. Four of these resulted from cooperation between universities from different countries: (a) Russia and Poland , (b) Taiwan and the USA , (c) Iran and Italy, and (d) India and Italy . The other contributions resulted from research carried out in universities from South Korea [5], Greece [6], China , and Japan

    Analysis of macroplastic transport in a river regulated by groynes

    Get PDF
    The transport of buoyant macroplastic litter in the presence of concrete groynes and vegetation in a straight channel was investigated. Four variants of channel configuration were tested during laboratory measurements. Water velocity fields were measured using ADV current meter, while floating plastic particles' paths were registered using PTV (Particle Tracking Velocimetry) technique. Preliminary research using numerical model Delft3D was carried out to reproduce the observed physical phenomena

    The Application of Hydraulic and Sediment Transport Models in Fluvial Geomorphology

    Get PDF
    After publishing the famous “Fluvial Processes in Geomorphology” in the early 1960s, the work of Luna Leopold, Gordon Wolman, and John Miller became a key for opening the door to understanding rivers and streams. They first illustrated the problem to geomorphologists and geographers. Later, Chang, in his “Fluvial Processes in River Engineering”, provided a basis for engineers, showing this group of professionals how to deal with rivers and how to understand them. Since then, more informative studies have been published. Many of the authors started to combine fluvial geomorphology knowledge and river engineering needs, such as “Tools in Fluvial Geomorphology” by G. Mathias Kondolf and Hervé Piégay, or focused more on river engineering tasks, such as “Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches” by Andrew Simon, Sean Bennett, and Janine Castro. Finally, Luna Leopold summarized river and stream morphologies in the beautiful “A view of the river”. It appears that we continue to explore this subject in the right direction. We better understand rivers and streams, and as engineers and fluvial geomorphologists, we can establish tools to help bring rivers alive. However, there is still a hunger for more scientific tools that we could use to further understand rivers and to support the development of healthy streams and rivers with high biodiversity in the present world, which has started to face water scarcity

    Proceedings of the XXVIIIth TELEMAC User Conference 18-19 October 2022

    Get PDF
    Hydrodynamic

    Flow-3D CFD model of bifurcated open channel flow: setup and validation

    Get PDF
    Bifurcation is a morphological feature present in most of fluvial systems; where a river splits into two channels, each bearing a portion of the flow and sediments. Extensive theoretical studies of river bifurcations were performed to understand the nature of flow patterns at such diversions. Nevertheless, the complexity of the flow structure in the bifurcated channel has resulted in various constraints on physical experimentation, so computational modelling is required to investigate the phenomenon. The advantages of computational modelling compared with experimental research (e.g. simple variable control, reduced cost, optimize design condition etc.) are widely known. The great advancement of computer technologies and the exponential increase in power, memory storage and affordability of high-speed machines in the early 20th century led to evolution and wide application of numerical fluid flow simulations, generally referred to as Computational Fluid Dynamics {CFD). In this study, the open-channel flume with a lateral channel established by Momplot et al (2017) is modelled in Flow-3D. The original investigation on divided flow of equal widths as simulated in ANSYS Fluent and validated with velocity measurements

    Modelling of Harbour and Coastal Structures

    Get PDF
    As the most heavily populated areas in the world, coastal zones host the majority and some of the most important human settlements, infrastructures and economic activities. Harbour and coastal structures are essential to the above, facilitating the transport of people and goods through ports, and protecting low-lying areas against flooding and erosion. While these structures were previously based on relatively rigid concepts about service life, at present, the design—or the upgrading—of these structures should effectively proof them against future pressures, enhancing their resilience and long-term sustainability. This Special Issue brings together a versatile collection of articles on the modelling of harbour and coastal structures, covering a wide array of topics on the design of such structures through a study of their interactions with waves and coastal morphology, as well as their role in coastal protection and harbour design in present and future climates

    Environmental Hydraulics Research

    Get PDF
    This book aims to provide research and engineering applications related to water and hydraulic problems. It is comprised of scientific papers in all topics of hydraulics, in particular, on sustainable water management, environmental hydraulics, ecohydraulics, water–energy nexus, and systems protection and efficiency. Safety and innovation issues, interdisciplinary problems, and linkage of theory to experimental and field applications can also be found within. Solutions of water problems in the form of prediction models, flow simulations, engineering systems, monitoring, management strategies covering scientific investigations and/or experimental or field studies of flow behaviour, hydrodynamics, and climate changes effects and adaptation, new design solutions, innovative approaches in the field of environment, hydraulics, techniques, methods, and analyses to address the new challenges in environmental hydraulics are alo presented and explored. This topic is studied both from a technical and environmental point of view, with the objective of protecting and enhancing the quality of the environment. In a cross-disciplinary field of study, this book comprises open channel/river flows and pressurised systems, combining, among others, new technological, social, and environmental hydraulic challenges, working in water-related fields with available information, new concepts and tools, new design solutions, eco-friendly technologies, and the advanced materials necessary to address the increasing challenges of ensuring a sustainable water environment by promoting the adaptation, flexibility, integration, and sustainability of recognised environmental solutions

    Hydraulics: The Next Wave

    Get PDF
    corecore