2,154 research outputs found

    Learning Features and Abstract Actions for Computing Generalized Plans

    Full text link
    Generalized planning is concerned with the computation of plans that solve not one but multiple instances of a planning domain. Recently, it has been shown that generalized plans can be expressed as mappings of feature values into actions, and that they can often be computed with fully observable non-deterministic (FOND) planners. The actions in such plans, however, are not the actions in the instances themselves, which are not necessarily common to other instances, but abstract actions that are defined on a set of common features. The formulation assumes that the features and the abstract actions are given. In this work, we address this limitation by showing how to learn them automatically. The resulting account of generalized planning combines learning and planning in a novel way: a learner, based on a Max SAT formulation, yields the features and abstract actions from sampled state transitions, and a FOND planner uses this information, suitably transformed, to produce the general plans. Correctness guarantees are given and experimental results on several domains are reported.Comment: Preprint of paper accepted at AAAI'19 conferenc

    Iterative Depth-First Search for Fully Observable Non-Deterministic Planning

    Full text link
    Fully Observable Non-Deterministic (FOND) planning models uncertainty through actions with non-deterministic effects. Existing FOND planning algorithms are effective and employ a wide range of techniques. However, most of the existing algorithms are not robust for dealing with both non-determinism and task size. In this paper, we develop a novel iterative depth-first search algorithm that solves FOND planning tasks and produces strong cyclic policies. Our algorithm is explicitly designed for FOND planning, addressing more directly the non-deterministic aspect of FOND planning, and it also exploits the benefits of heuristic functions to make the algorithm more effective during the iterative searching process. We compare our proposed algorithm to well-known FOND planners, and show that it has robust performance over several distinct types of FOND domains considering different metrics

    Contingent planning under uncertainty via stochastic satisfiability

    Get PDF
    We describe a new planning technique that efficiently solves probabilistic propositional contingent planning problems by converting them into instances of stochastic satisfiability (SSAT) and solving these problems instead. We make fundamental contributions in two areas: the solution of SSAT problems and the solution of stochastic planning problems. This is the first work extending the planning-as-satisfiability paradigm to stochastic domains. Our planner, ZANDER, can solve arbitrary, goal-oriented, finite-horizon partially observable Markov decision processes (POMDPs). An empirical study comparing ZANDER to seven other leading planners shows that its performance is competitive on a range of problems. © 2003 Elsevier Science B.V. All rights reserved
    • …
    corecore