3 research outputs found

    Deep Feed-forward Sequential Memory Networks for Speech Synthesis

    Full text link
    The Bidirectional LSTM (BLSTM) RNN based speech synthesis system is among the best parametric Text-to-Speech (TTS) systems in terms of the naturalness of generated speech, especially the naturalness in prosody. However, the model complexity and inference cost of BLSTM prevents its usage in many runtime applications. Meanwhile, Deep Feed-forward Sequential Memory Networks (DFSMN) has shown its consistent out-performance over BLSTM in both word error rate (WER) and the runtime computation cost in speech recognition tasks. Since speech synthesis also requires to model long-term dependencies compared to speech recognition, in this paper, we investigate the Deep-FSMN (DFSMN) in speech synthesis. Both objective and subjective experiments show that, compared with BLSTM TTS method, the DFSMN system can generate synthesized speech with comparable speech quality while drastically reduce model complexity and speech generation time.Comment: 5 pages, ICASSP 201

    Deep-FSMN for Large Vocabulary Continuous Speech Recognition

    Full text link
    In this paper, we present an improved feedforward sequential memory networks (FSMN) architecture, namely Deep-FSMN (DFSMN), by introducing skip connections between memory blocks in adjacent layers. These skip connections enable the information flow across different layers and thus alleviate the gradient vanishing problem when building very deep structure. As a result, DFSMN significantly benefits from these skip connections and deep structure. We have compared the performance of DFSMN to BLSTM both with and without lower frame rate (LFR) on several large speech recognition tasks, including English and Mandarin. Experimental results shown that DFSMN can consistently outperform BLSTM with dramatic gain, especially trained with LFR using CD-Phone as modeling units. In the 2000 hours Fisher (FSH) task, the proposed DFSMN can achieve a word error rate of 9.4% by purely using the cross-entropy criterion and decoding with a 3-gram language model, which achieves a 1.5% absolute improvement compared to the BLSTM. In a 20000 hours Mandarin recognition task, the LFR trained DFSMN can achieve more than 20% relative improvement compared to the LFR trained BLSTM. Moreover, we can easily design the lookahead filter order of the memory blocks in DFSMN to control the latency for real-time applications

    Single-Channel Multi-talker Speech Recognition with Permutation Invariant Training

    Full text link
    Although great progresses have been made in automatic speech recognition (ASR), significant performance degradation is still observed when recognizing multi-talker mixed speech. In this paper, we propose and evaluate several architectures to address this problem under the assumption that only a single channel of mixed signal is available. Our technique extends permutation invariant training (PIT) by introducing the front-end feature separation module with the minimum mean square error (MSE) criterion and the back-end recognition module with the minimum cross entropy (CE) criterion. More specifically, during training we compute the average MSE or CE over the whole utterance for each possible utterance-level output-target assignment, pick the one with the minimum MSE or CE, and optimize for that assignment. This strategy elegantly solves the label permutation problem observed in the deep learning based multi-talker mixed speech separation and recognition systems. The proposed architectures are evaluated and compared on an artificially mixed AMI dataset with both two- and three-talker mixed speech. The experimental results indicate that our proposed architectures can cut the word error rate (WER) by 45.0% and 25.0% relatively against the state-of-the-art single-talker speech recognition system across all speakers when their energies are comparable, for two- and three-talker mixed speech, respectively. To our knowledge, this is the first work on the multi-talker mixed speech recognition on the challenging speaker-independent spontaneous large vocabulary continuous speech task.Comment: 11 pages, 6 figures, Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing. arXiv admin note: text overlap with arXiv:1704.0198
    corecore