3 research outputs found

    A generalization of Goodstein's theorem: interpolation by polynomial functions of distributive lattices

    Full text link
    We consider the problem of interpolating functions partially defined over a distributive lattice, by means of lattice polynomial functions. Goodstein's theorem solves a particular instance of this interpolation problem on a distributive lattice L with least and greatest elements 0 and 1, resp.: Given an n-ary partial function f over L, defined on all 0-1 tuples, f can be extended to a lattice polynomial function p over L if and only if f is monotone; in this case, the interpolating polynomial p is unique. We extend Goodstein's theorem to a wider class of n-ary partial functions f over a distributive lattice L, not necessarily bounded, where the domain of f is a cuboid of the form D={a1,b1}x...x{an,bn} with ai<bi, and determine the class of such partial functions which can be interpolated by lattice polynomial functions. In this wider setting, interpolating polynomials are not necessarily unique; we provide explicit descriptions of all possible lattice polynomial functions which interpolate these partial functions, when such an interpolation is available.Comment: 12 page
    corecore