6,297 research outputs found
First Passage Properties of the Erdos-Renyi Random Graph
We study the mean time for a random walk to traverse between two arbitrary
sites of the Erdos-Renyi random graph. We develop an effective medium
approximation that predicts that the mean first-passage time between pairs of
nodes, as well as all moments of this first-passage time, are insensitive to
the fraction p of occupied links. This prediction qualitatively agrees with
numerical simulations away from the percolation threshold. Near the percolation
threshold, the statistically meaningful quantity is the mean transit rate,
namely, the inverse of the first-passage time. This rate varies
non-monotonically with p near the percolation transition. Much of this behavior
can be understood by simple heuristic arguments.Comment: 10 pages, 9 figures, 2-column revtex4 forma
The evolution of the cover time
The cover time of a graph is a celebrated example of a parameter that is easy
to approximate using a randomized algorithm, but for which no constant factor
deterministic polynomial time approximation is known. A breakthrough due to
Kahn, Kim, Lovasz and Vu yielded a (log log n)^2 polynomial time approximation.
We refine this upper bound, and show that the resulting bound is sharp and
explicitly computable in random graphs. Cooper and Frieze showed that the cover
time of the largest component of the Erdos-Renyi random graph G(n,c/n) in the
supercritical regime with c>1 fixed, is asymptotic to f(c) n \log^2 n, where
f(c) tends to 1 as c tends to 1. However, our new bound implies that the cover
time for the critical Erdos-Renyi random graph G(n,1/n) has order n, and shows
how the cover time evolves from the critical window to the supercritical phase.
Our general estimate also yields the order of the cover time for a variety of
other concrete graphs, including critical percolation clusters on the Hamming
hypercube {0,1}^n, on high-girth expanders, and on tori Z_n^d for fixed large
d. For the graphs we consider, our results show that the blanket time,
introduced by Winkler and Zuckerman, is within a constant factor of the cover
time. Finally, we prove that for any connected graph, adding an edge can
increase the cover time by at most a factor of 4.Comment: 14 pages, to appear in CP
New Bounds for Edge-Cover by Random Walk
We show that the expected time for a random walk on a (multi-)graph to
traverse all edges of , and return to its starting point, is at most
; if each edge must be traversed in both directions, the bound is .
Both bounds are tight and may be applied to graphs with arbitrary edge lengths,
with implications for Brownian motion on a finite or infinite network of total
edge-length
Eulerian Walkers as a model of Self-Organised Criticality
We propose a new model of self-organized criticality. A particle is dropped
at random on a lattice and moves along directions specified by arrows at each
site. As it moves, it changes the direction of the arrows according to fixed
rules. On closed graphs these walks generate Euler circuits. On open graphs,
the particle eventually leaves the system, and a new particle is then added.
The operators corresponding to particle addition generate an abelian group,
same as the group for the Abelian Sandpile model on the graph. We determine the
critical steady state and some critical exponents exactly, using this
equivalence.Comment: 4 pages, RevTex, 4 figure
Quantum walks on quotient graphs
A discrete-time quantum walk on a graph is the repeated application of a
unitary evolution operator to a Hilbert space corresponding to the graph. If
this unitary evolution operator has an associated group of symmetries, then for
certain initial states the walk will be confined to a subspace of the original
Hilbert space. Symmetries of the original graph, given by its automorphism
group, can be inherited by the evolution operator. We show that a quantum walk
confined to the subspace corresponding to this symmetry group can be seen as a
different quantum walk on a smaller quotient graph. We give an explicit
construction of the quotient graph for any subgroup of the automorphism group
and illustrate it with examples. The automorphisms of the quotient graph which
are inherited from the original graph are the original automorphism group
modulo the subgroup used to construct it. We then analyze the behavior of
hitting times on quotient graphs. Hitting time is the average time it takes a
walk to reach a given final vertex from a given initial vertex. It has been
shown in earlier work [Phys. Rev. A {\bf 74}, 042334 (2006)] that the hitting
time can be infinite. We give a condition which determines whether the quotient
graph has infinite hitting times given that they exist in the original graph.
We apply this condition for the examples discussed and determine which quotient
graphs have infinite hitting times. All known examples of quantum walks with
fast hitting times correspond to systems with quotient graphs much smaller than
the original graph; we conjecture that the existence of a small quotient graph
with finite hitting times is necessary for a walk to exhibit a quantum
speed-up.Comment: 18 pages, 7 figures in EPS forma
- …
