60,034 research outputs found

    Community detection and role identification in directed networks: understanding the Twitter network of the care.data debate

    Get PDF
    With the rise of social media as an important channel for the debate and discussion of public affairs, online social networks such as Twitter have become important platforms for public information and engagement by policy makers. To communicate effectively through Twitter, policy makers need to understand how influence and interest propagate within its network of users. In this chapter we use graph-theoretic methods to analyse the Twitter debate surrounding NHS Englands controversial care.data scheme. Directionality is a crucial feature of the Twitter social graph - information flows from the followed to the followers - but is often ignored in social network analyses; our methods are based on the behaviour of dynamic processes on the network and can be applied naturally to directed networks. We uncover robust communities of users and show that these communities reflect how information flows through the Twitter network. We are also able to classify users by their differing roles in directing the flow of information through the network. Our methods and results will be useful to policy makers who would like to use Twitter effectively as a communication medium

    Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    Full text link
    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection in networks through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e., groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer, and topic. The study of flows also allows us to generate an interest distance, which affords a personalised view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterised by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks.Comment: 32 pages, 14 figures. Supplementary Spreadsheet available from: http://www2.imperial.ac.uk/~mbegueri/Docs/riotsCommunities.zip or http://rsif.royalsocietypublishing.org/content/11/101/20140940/suppl/DC
    • …
    corecore