48 research outputs found

    The asymptotical error of broadcast gossip averaging algorithms

    Full text link
    In problems of estimation and control which involve a network, efficient distributed computation of averages is a key issue. This paper presents theoretical and simulation results about the accumulation of errors during the computation of averages by means of iterative "broadcast gossip" algorithms. Using martingale theory, we prove that the expectation of the accumulated error can be bounded from above by a quantity which only depends on the mixing parameter of the algorithm and on few properties of the network: its size, its maximum degree and its spectral gap. Both analytical results and computer simulations show that in several network topologies of applicative interest the accumulated error goes to zero as the size of the network grows large.Comment: 10 pages, 3 figures. Based on a draft submitted to IFACWC201

    Real-valued average consensus over noisy quantized channels

    Get PDF
    This paper concerns the average consensus problem with the constraint of quantized communication between nodes. A broad class of algorithms is analyzed, in which the transmission strategy, which decides what value to communicate to the neighbours, can include various kinds of rounding, probabilistic quantization, and bounded noise. The arbitrariness of the transmission strategy is compensated by a feedback mechanism which can be interpreted as a self-inhibitory action. The result is that the average of the nodes state is not conserved across iterations, and the nodes do not converge to a consensus; however, we show that both errors can be made as small as desired. Bounds on these quantities involve the spectral properties of the graph and can be proved by employing elementary techniques of LTI systems analysis

    Average resistance of toroidal graphs

    Get PDF
    The average effective resistance of a graph is a relevant performance index in many applications, including distributed estimation and control of network systems. In this paper, we study how the average resistance depends on the graph topology and specifically on the dimension of the graph. We concentrate on dd-dimensional toroidal grids and we exploit the connection between resistance and Laplacian eigenvalues. Our analysis provides tight estimates of the average resistance, which are key to study its asymptotic behavior when the number of nodes grows to infinity. In dimension two, the average resistance diverges: in this case, we are able to capture its rate of growth when the sides of the grid grow at different rates. In higher dimensions, the average resistance is bounded uniformly in the number of nodes: in this case, we conjecture that its value is of order 1/d1/d for large dd. We prove this fact for hypercubes and when the side lengths go to infinity.Comment: 24 pages, 6 figures, to appear in SIAM Journal on Control and Optimization (SICON

    Optimal strategies in the average consensus problem

    Full text link
    We prove that for a set of communicating agents to compute the average of their initial positions (average consensus problem), the optimal topology of communication is given by a de Bruijn's graph. Consensus is then reached in a finitely many steps. A more general family of strategies, constructed by block Kronecker products, is investigated and compared to Cayley strategies.Comment: 9 pages; extended preprint with proofs of a CDC 2007 (Conference on decision and Control) pape

    Randomized Consensus with Attractive and Repulsive Links

    Full text link
    We study convergence properties of a randomized consensus algorithm over a graph with both attractive and repulsive links. At each time instant, a node is randomly selected to interact with a random neighbor. Depending on if the link between the two nodes belongs to a given subgraph of attractive or repulsive links, the node update follows a standard attractive weighted average or a repulsive weighted average, respectively. The repulsive update has the opposite sign of the standard consensus update. In this way, it counteracts the consensus formation and can be seen as a model of link faults or malicious attacks in a communication network, or the impact of trust and antagonism in a social network. Various probabilistic convergence and divergence conditions are established. A threshold condition for the strength of the repulsive action is given for convergence in expectation: when the repulsive weight crosses this threshold value, the algorithm transits from convergence to divergence. An explicit value of the threshold is derived for classes of attractive and repulsive graphs. The results show that a single repulsive link can sometimes drastically change the behavior of the consensus algorithm. They also explicitly show how the robustness of the consensus algorithm depends on the size and other properties of the graphs
    corecore