9,183 research outputs found

    Communication Strategies for Low-Latency Trading

    Full text link
    The possibility of latency arbitrage in financial markets has led to the deployment of high-speed communication links between distant financial centers. These links are noisy and so there is a need for coding. In this paper, we develop a gametheoretic model of trading behavior where two traders compete to capture latency arbitrage opportunities using binary signalling. Different coding schemes are strategies that trade off between reliability and latency. When one trader has a better channel, the second trader should not compete. With statistically identical channels, we find there are two different regimes of channel noise for which: there is a unique Nash equilibrium yielding ties; and there are two Nash equilibria with different winners.Comment: Will appear in IEEE International Symposium on Information Theory (ISIT), 201

    The Rise of Computerized High Frequency Trading: Use and Controversy

    Get PDF
    Over the last decade, there has been a dramatic shift in how securities are traded in the capital markets. Utilizing supercomputers and complex algorithms that pick up on breaking news, company/stock/economic information and price and volume movements, many institutions now make trades in a matter of microseconds, through a practice known as high frequency trading. Today, high frequency traders have virtually phased out the dinosaur floor-traders and average investors of the past. With the recent attempted robbery of one of these high frequency trading platforms from Goldman Sachs this past summer, this rise of the machines has become front page news, generating vast controversy and discourse over this largely secretive and ultra-lucrative practice. Because of this phenomenon, those of us on Main Street are faced with a variety of questions: What exactly is high frequency trading? How does it work? How long has this been going on for? Should it be banned or curtailed? What is the end-game, and how will this shape the future of securities trading and its regulation? This iBrief explores the answers to these questions

    Impersonal efficiency and the dangers of a fully automated securities exchange

    Get PDF
    This report identifies impersonal efficiency as a driver of market automation during the past four decades, and speculates about the future problems it might pose. The ideology of impersonal efficiency is rooted in a mistrust of financial intermediaries such as floor brokers and specialists. Impersonal efficiency has guided the development of market automation towards transparency and impersonality, at the expense of human trading floors. The result has been an erosion of the informal norms and human judgment that characterize less anonymous markets. We call impersonal efficiency an ideology because we do not think that impersonal markets are always superior to markets built on social ties. This report traces the historical origins of this ideology, considers the problems it has already created in the recent Flash Crash of 2010, and asks what potential risks it might pose in the future

    Agent-Based Simulations of Blockchain protocols illustrated via Kadena's Chainweb

    Full text link
    While many distributed consensus protocols provide robust liveness and consistency guarantees under the presence of malicious actors, quantitative estimates of how economic incentives affect security are few and far between. In this paper, we describe a system for simulating how adversarial agents, both economically rational and Byzantine, interact with a blockchain protocol. This system provides statistical estimates for the economic difficulty of an attack and how the presence of certain actors influences protocol-level statistics, such as the expected time to regain liveness. This simulation system is influenced by the design of algorithmic trading and reinforcement learning systems that use explicit modeling of an agent's reward mechanism to evaluate and optimize a fully autonomous agent. We implement and apply this simulation framework to Kadena's Chainweb, a parallelized Proof-of-Work system, that contains complexity in how miner incentive compliance affects security and censorship resistance. We provide the first formal description of Chainweb that is in the literature and use this formal description to motivate our simulation design. Our simulation results include a phase transition in block height growth rate as a function of shard connectivity and empirical evidence that censorship in Chainweb is too costly for rational miners to engage in. We conclude with an outlook on how simulation can guide and optimize protocol development in a variety of contexts, including Proof-of-Stake parameter optimization and peer-to-peer networking design.Comment: 10 pages, 7 figures, accepted to the IEEE S&B 2019 conferenc

    Algorithmic trading engines versus human traders – do they behave different in securities markets?

    Get PDF
    After exchanges and alternative trading venues have introduced electronic execution mechanisms worldwide, the focus of the securities trading industry shifted to the use of fully electronic trading engines by banks, brokers and their institutional customers. These Algorithmic Trading engines enable order submissions without human intervention based on quantitative models applying historical and real-time market data. Although there is a widespread discussion on the pros and cons of Algorithmic Trading and on its impact on market volatility and market quality, little is known on how algorithms actually place their orders in the market and whether and in which respect this differs form other order submissions. Based on a dataset that – for the first time – includes a specific flag to enable the identification of orders submitted by Algorithmic Trading engines, the paper investigates the extent of Algorithmic Trading activity and specifically their order placement strategies in comparison to human traders in the Xetra trading system. It is shown that Algorithmic Trading has become a relevant part of overall market activity and that Algorithmic Trading engines fundamentally differ from human traders in their order submission, modification and deletion behavior as they exploit real-time market data and latest market movements
    • 

    corecore