15,814 research outputs found

    Communication Lower Bounds for Statistical Estimation Problems via a Distributed Data Processing Inequality

    Full text link
    We study the tradeoff between the statistical error and communication cost of distributed statistical estimation problems in high dimensions. In the distributed sparse Gaussian mean estimation problem, each of the mm machines receives nn data points from a dd-dimensional Gaussian distribution with unknown mean θ\theta which is promised to be kk-sparse. The machines communicate by message passing and aim to estimate the mean θ\theta. We provide a tight (up to logarithmic factors) tradeoff between the estimation error and the number of bits communicated between the machines. This directly leads to a lower bound for the distributed \textit{sparse linear regression} problem: to achieve the statistical minimax error, the total communication is at least Ω(min{n,d}m)\Omega(\min\{n,d\}m), where nn is the number of observations that each machine receives and dd is the ambient dimension. These lower results improve upon [Sha14,SD'14] by allowing multi-round iterative communication model. We also give the first optimal simultaneous protocol in the dense case for mean estimation. As our main technique, we prove a \textit{distributed data processing inequality}, as a generalization of usual data processing inequalities, which might be of independent interest and useful for other problems.Comment: To appear at STOC 2016. Fixed typos in theorem 4.5 and incorporated reviewers' suggestion
    corecore