3,418 research outputs found

    Commonsense knowledge representation and reasoning with fuzzy neural networks

    Get PDF
    This paper highlights the theory of common-sense knowledge in terms of representation and reasoning. A connectionist model is proposed for common-sense knowledge representation and reasoning. A generic fuzzy neuron is employed as a basic element for the connectionist model. The representation and reasoning ability of the model is described through examples

    How much of commonsense and legal reasoning is formalizable? A review of conceptual obstacles

    Get PDF
    Fifty years of effort in artificial intelligence (AI) and the formalization of legal reasoning have produced both successes and failures. Considerable success in organizing and displaying evidence and its interrelationships has been accompanied by failure to achieve the original ambition of AI as applied to law: fully automated legal decision-making. The obstacles to formalizing legal reasoning have proved to be the same ones that make the formalization of commonsense reasoning so difficult, and are most evident where legal reasoning has to meld with the vast web of ordinary human knowledge of the world. Underlying many of the problems is the mismatch between the discreteness of symbol manipulation and the continuous nature of imprecise natural language, of degrees of similarity and analogy, and of probabilities

    Bounded Rationality and Heuristics in Humans and in Artificial Cognitive Systems

    Get PDF
    In this paper I will present an analysis of the impact that the notion of “bounded rationality”, introduced by Herbert Simon in his book “Administrative Behavior”, produced in the field of Artificial Intelligence (AI). In particular, by focusing on the field of Automated Decision Making (ADM), I will show how the introduction of the cognitive dimension into the study of choice of a rational (natural) agent, indirectly determined - in the AI field - the development of a line of research aiming at the realisation of artificial systems whose decisions are based on the adoption of powerful shortcut strategies (known as heuristics) based on “satisficing” - i.e. non optimal - solutions to problem solving. I will show how the “heuristic approach” to problem solving allowed, in AI, to face problems of combinatorial complexity in real-life situations and still represents an important strategy for the design and implementation of intelligent systems

    Language, logic and ontology: uncovering the structure of commonsense knowledge

    Get PDF
    The purpose of this paper is twofold: (i) we argue that the structure of commonsense knowledge must be discovered, rather than invented; and (ii) we argue that natural language, which is the best known theory of our (shared) commonsense knowledge, should itself be used as a guide to discovering the structure of commonsense knowledge. In addition to suggesting a systematic method to the discovery of the structure of commonsense knowledge, the method we propose seems to also provide an explanation for a number of phenomena in natural language, such as metaphor, intensionality, and the semantics of nominal compounds. Admittedly, our ultimate goal is quite ambitious, and it is no less than the systematic ‘discovery’ of a well-typed ontology of commonsense knowledge, and the subsequent formulation of the longawaited goal of a meaning algebra

    Explicit Reasoning over End-to-End Neural Architectures for Visual Question Answering

    Full text link
    Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.Comment: 9 pages, 3 figures, AAAI 201

    Hybridisation for versatile decision-making in game opponent AI

    Get PDF
    Hybridisation for versatile decision-making in game opponent A

    Commonsense knowledge-based face detection

    Get PDF
    A connectionist model is presented for commonsense knowledge representation and reasoning. The representation and reasoning ability of the model is described through examples. The commonsense knowledge base is employed to develop a human face detection system. The system consists of three stages: preprocessing, face-components extraction, and final decision-making. A neural network-based algorithm is utilised to extract face components. Five networks are trained to detect mouth, nose, eyes, and full face. The detected face components and their corresponding possibility degrees allow the knowledge base to locate faces in the image and generate a membership degree for the detected faces within the face class. The experimental results obtained using this method are presented
    • 

    corecore