484,729 research outputs found

    The Capability of Some Butterflies as Carriers of Common Milkweed Pollen

    Get PDF
    The common milkweed, Asclepias syriaca L., is remarkably adapted for cross pollination by insects. Its pollen sacs (pollinia) are often found attached to the appendages of bees, wasps, butterflies, and other insects that visit milkweed for its nectar (Judd, 1955; Matheson, 1951 ; Muller, 1883). In the summer of 1966 and 1967 I collected numerous pierid and nymphalid butterflies associated with milkweed plants in Michigan in order to examine them for their pollen-carrying capability. Species of butterflies collected were Colias interior Scudder, C. eurytheme Boisduval, Pieris rapae (L.). and Speyeria aphrodite (Fab.). These insects were taken while feeding on or flying near milkweed plants between 3 July and 22 July each year--the period when milkweed was in full bloom--in Crawford, Montmorency, and Oscoda Counties, Michigan

    A case for adaptive sub-carrier level power allocation in OFDMA networks

    Get PDF
    In today's OFDMA networks, the transmission power is typically fixed and the same for all the sub-carriers that compose a channel. The sub-carriers though, experience different degrees of fading and thus, the received power is different for different sub-carriers; while some frequencies experience deep fades, others are relatively unaffected. In this paper, we make a case of redistributing the power across the sub-carriers (subject to a fixed power budget constraint) to better cope with this frequency selectivity. Specifically, we design a joint power and rate adaptation scheme (called JPRA for short) wherein power redistribution is combined with sub-carrier level rate adaptation to yield significant throughput benefits. We further consider two variants of JPRA: (a) JPRA-CR where, the power is redistributed across sub-carriers so as to support a maximum common rate (CR) across sub-carriers and (b) JPRA-MT where, the goal is to redistribute power such that the transmission time of a packet is minimized. While the first variant decreases transceiver complexity and is simpler, the second is geared towards achieving the maximum throughput possible. We implement both variants of JPRA on our WARP radio testbed. Our extensive experiments demonstrate that our scheme provides a 35% improvement in total network throughput in testbed experiments compared to FARA, a scheme where only sub-carrier level rate adaptation is used. We also perform simulations to demonstrate the efficacy of JPRA in larger scale networks. © 2012 ACM

    Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    Get PDF
    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure

    PRP and BMAC for Musculoskeletal Conditions via Biomaterial Carriers.

    Get PDF
    Platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) are orthobiologic therapies considered as an alternative to the current therapies for muscle, bone and cartilage. Different formulations of biomaterials have been used as carriers for PRP and BMAC in order to increase regenerative processes. The most common biomaterials utilized in conjunction with PRP and BMAC clinical trials are organic scaffolds and natural or synthetic polymers. This review will cover the combinatorial strategies of biomaterial carriers with PRP and BMAC for musculoskeletal conditions (MsCs) repair and regeneration in clinical trials. The main objective is to review the therapeutic use of PRP and BMAC as a treatment option for muscle, bone and cartilage injuries

    A High Efficiency Lateral Light Emitting Device on SOI

    Get PDF
    The infrared light emission of lateral p/sup +/-p-n/sup +/ diodes realized on SIMOX-SOI (separation by implantation of oxygen - silicon on insulator) substrates has been studied. The confinement of the free carriers in one dimension due to the buried oxide was suggested to be a key point to increase the band-to-band recombination probability in silicon light emitters. We found in our devices an external quantum efficiency comparable to previous results presented in the literature. The wavelength range of the emission was found to be 900-1300 nm which is common for indirect band to band recombination in Si. The SOI technology incorporates an insulating layer between the thin single crystal silicon layer and the much thicker substrate. This electrically insulating layer is also a thermal isolator and so self-heating effects are common in devices fabricated on SOI wafers. Investigation of its influence on the light emission and the light distribution in the device has been carried out in our research. In this paper, the characteristics of the device with different active region lengths were investigated and explained quantitatively based on the recombination rate of carriers inside the active area by using the simulation model in Silvaco

    Multispectral variable magnification glancing incidence x ray telescope

    Get PDF
    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation

    Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors

    Full text link
    We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π\pi,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of \textit{spatial} and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor coupling reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.Comment: 6 pages, 3 figures, submitted to Phys. Rev. Lett. on 17 September 201

    Single-carrier impact ionization favored by a limited band dispersion

    Full text link
    A critical requirement for high gain and low noise avalanche photodiodes is the single-carrier avalanche multiplication. We propose that the single-carrier avalanche multiplication can be achieved in materials with a limited width of the conduction or valence band resulting in a restriction of kinetic energy for one of the charge carriers. This feature is not common to the majority of technologically relevant semiconductors, but it is observed in chalcogenides, such as Selenium and compound I2-II-IV-VI4 alloys.Comment: 9 pages, 3 figure
    corecore