2,229,365 research outputs found
A compact statistical model of the song syntax in Bengalese finch
Songs of many songbird species consist of variable sequences of a finite
number of syllables. A common approach for characterizing the syntax of these
complex syllable sequences is to use transition probabilities between the
syllables. This is equivalent to the Markov model, in which each syllable is
associated with one state, and the transition probabilities between the states
do not depend on the state transition history. Here we analyze the song syntax
in a Bengalese finch. We show that the Markov model fails to capture the
statistical properties of the syllable sequences. Instead, a state transition
model that accurately describes the statistics of the syllable sequences
includes adaptation of the self-transition probabilities when states are
repeatedly revisited, and allows associations of more than one state to the
same syllable. Such a model does not increase the model complexity
significantly. Mathematically, the model is a partially observable Markov model
with adaptation (POMMA). The success of the POMMA supports the branching chain
network hypothesis of how syntax is controlled within the premotor song nucleus
HVC, and suggests that adaptation and many-to-one mapping from neural
substrates to syllables are important features of the neural control of complex
song syntax
An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3
We report a synchrotron x-ray scattering study of the magnetoresistive
manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes
an x-ray induced structural transition at which charge ordering of Mn^3+ and
Mn^4+ ions characteristic to the low-temperature state of this compound is
destroyed. The transition is persistent but the charge-ordered state can be
restored by heating above the charge-ordering transition temperature and
subsequently cooling. The charge-ordering diffraction peaks, which are
broadened at all temperatures, broaden more upon x-ray irradiation, indicating
the finite correlation length of the charge-ordered state. Together with the
recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results
demonstrate that the photoinduced structural change is a common property of the
charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data
analysis mad
State Transition Algorithm
In terms of the concepts of state and state transition, a new heuristic
random search algorithm named state transition algorithm is proposed. For
continuous function optimization problems, four special transformation
operators called rotation, translation, expansion and axesion are designed.
Adjusting measures of the transformations are mainly studied to keep the
balance of exploration and exploitation. Convergence analysis is also discussed
about the algorithm based on random search theory. In the meanwhile, to
strengthen the search ability in high dimensional space, communication strategy
is introduced into the basic algorithm and intermittent exchange is presented
to prevent premature convergence. Finally, experiments are carried out for the
algorithms. With 10 common benchmark unconstrained continuous functions used to
test the performance, the results show that state transition algorithms are
promising algorithms due to their good global search capability and convergence
property when compared with some popular algorithms.Comment: 18 pages, 28 figure
Polarons in suspended carbon nanotubes
We prove theoretically the possibility of electric-field controlled polaron
formation involving flexural (bending) modes in suspended carbon nanotubes.
Upon increasing the field, the ground state of the system with a single extra
electron undergoes a first order phase transition between an extended state and
a localized polaron state. For a common experimental setup, the threshold
electric field is only of order V/m
A logic for n-dimensional hierarchical refinement
Hierarchical transition systems provide a popular mathematical structure to
represent state-based software applications in which different layers of
abstraction are represented by inter-related state machines. The decomposition
of high level states into inner sub-states, and of their transitions into inner
sub-transitions is common refinement procedure adopted in a number of
specification formalisms.
This paper introduces a hybrid modal logic for k-layered transition systems,
its first-order standard translation, a notion of bisimulation, and a modal
invariance result. Layered and hierarchical notions of refinement are also
discussed in this setting.Comment: In Proceedings Refine'15, arXiv:1606.0134
An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory
We present here a formally exact model for electronic transitions between an
initial (donor) and final (acceptor) states linked by an intermediate (bridge)
state. Our model incorporates a common set of vibrational modes that are
coupled to the donor, bridge, and acceptor states and serves as a dissipative
bath that destroys quantum coherence between the donor and acceptor. Taking the
memory time of the bath as a free parameter, we calculate transition rates for
a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the
energetics and couplings in a typical organic photovoltaic system. Our results
indicate that if the memory time of the bath is of the order of 10-100 fs, a
two-state kinetic (i.e., incoherent hopping) model will grossly underestimate
overall transition rate.Comment: 9 pages, 2 figure
High Q Cavity Induced Fluxon Bunching in Inductively Coupled Josephson Junctions
We consider fluxon dynamics in a stack of inductively coupled long Josephson
junctions connected capacitively to a common resonant cavity at one of the
boundaries. We study, through theoretical and numerical analysis, the
possibility for the cavity to induce a transition from the energetically
favored state of spatially separated shuttling fluxons in the different
junctions to a high velocity, high energy state of identical fluxon modes.Comment: 8 pages, 5 figure
- …
