5 research outputs found

    Key Indistinguishability vs. Strong Key Indistinguishability for Hierarchical Key Assignment Schemes

    Get PDF
    A hierarchical key assignment scheme is a method to assign some private information and encryption keys to a set of classes in a partially ordered hierarchy, in such a way that the private information of a higher class can be used to derive the keys of all classes lower down in the hierarchy. In this paper we analyze the security of hierarchical key assignment schemes according to different notions: security with respect to key indistinguishability and against key recovery, as well as the two recently proposed notions of security with respect to strong key indistinguishability and against strong key recovery. We first explore the relations between all security notions and, in particular, we prove that security with respect to strong key indistinguishability is not stronger than the one with respect to key indistinguishability. Afterwards, we propose a general construction yielding a hierarchical key assignment scheme offering security against strong key recovery, given any hierarchical key assignment scheme which guarantees security against key recovery

    Time-bound Hierarchical Key Assignment: An Overview

    Get PDF

    Provably-Secure Time-Bound Hierarchical Key Assignment Schemes

    Get PDF
    A time-bound hierarchical key assignment scheme is a method to assign time-dependent encryption keys to a set of classes in a partially ordered hierarchy, in such a way that each class can compute the keys of all classes lower down in the hierarchy, according to temporal constraints. In this paper we design and analyze time-bound hierarchical key assignment schemes which are provably-secure and efficient. We consider both the unconditionally secure and the computationally secure settings and distinguish between two different goals: security with respect to key indistinguishability and against key recovery. We first present definitions of security with respect to both goals in the unconditionally secure setting and we show tight lower bounds on the size of the private information distributed to each class. Then, we consider the computational setting and we further distinguish security against static and adaptive adversarial behaviors. We explore the relations between all possible combinations of security goals and adversarial behaviors and, in particular, we prove that security against adaptive adversaries is (polynomially) equivalent to security against static adversaries. Afterwards, we prove that a recently proposed scheme is insecure against key recovery. Finally, we propose two different constructions for time-bound key assignment schemes. The first one is based on symmetric encryption schemes, whereas, the second one makes use of bilinear maps. Both constructions support updates to the access hierarchy with local changes to the public information and without requiring any private information to be re-distributed. These appear to be the first constructions for time-bound hierarchical key assignment schemes which are simultaneously practical and provably-secure

    Comments on a cryptographic key assignment scheme

    Get PDF
    In this paper, we analyse the security of a cryptographic key assignment scheme, recently proposed by Huang and Chang, that is designed to provide time-constrained hierarchical access control. We show that the new scheme has potential security vulnerabilities, which enable malicious users and attackers to violate the privacy of other users
    corecore