825 research outputs found

    On the Shannon Cipher System With a Wiretapper Guessing Subject to Distortion and Reliability Requirements

    Full text link
    In this paper we discuss the processes in the Shannon cipher system with discrete memoryless source and a guessing wiretapper. The wiretapper observes a cryptogram of NN-vector of ciphered messages in the public channel and tries to guess successively the vector of messages within given distortion level Δ\Delta and small probability of error less than exp{NE}\exp \{-NE\} with positive reliability index EE. The security of the system is measured by the expected number of guesses which wiretapper needs for the approximate reconstruction of the vector of source messages. The distortion, the reliability criteria and the possibility of upper limiting the number of guesses extend the approach studied by Merhav and Arikan. A single-letter characterization is given for the region of pairs (RL,R)(R_L,R) (of the rate RLR_L of the maximum number of guesses L(N)L(N) and the rate RR of the average number of guesses) in dependence on key rate RKR_K, distortion level Δ\Delta and reliability EE.Comment: 14 pages, 3 figures, Submitted to IEEE Transactions on Information Theor

    Centralized vs Decentralized Multi-Agent Guesswork

    Full text link
    We study a notion of guesswork, where multiple agents intend to launch a coordinated brute-force attack to find a single binary secret string, and each agent has access to side information generated through either a BEC or a BSC. The average number of trials required to find the secret string grows exponentially with the length of the string, and the rate of the growth is called the guesswork exponent. We compute the guesswork exponent for several multi-agent attacks. We show that a multi-agent attack reduces the guesswork exponent compared to a single agent, even when the agents do not exchange information to coordinate their attack, and try to individually guess the secret string using a predetermined scheme in a decentralized fashion. Further, we show that the guesswork exponent of two agents who do coordinate their attack is strictly smaller than that of any finite number of agents individually performing decentralized guesswork.Comment: Accepted at IEEE International Symposium on Information Theory (ISIT) 201

    Some Useful Integral Representations for Information-Theoretic Analyses

    Full text link
    This work is an extension of our earlier article, where a well-known integral representation of the logarithmic function was explored, and was accompanied with demonstrations of its usefulness in obtaining compact, easily-calculable, exact formulas for quantities that involve expectations of the logarithm of a positive random variable. Here, in the same spirit, we derive an exact integral representation (in one or two dimensions) of the moment of a nonnegative random variable, or the sum of such independent random variables, where the moment order is a general positive noninteger real (also known as fractional moments). The proposed formula is applied to a variety of examples with an information-theoretic motivation, and it is shown how it facilitates their numerical evaluations. In particular, when applied to the calculation of a moment of the sum of a large number, nn, of nonnegative random variables, it is clear that integration over one or two dimensions, as suggested by our proposed integral representation, is significantly easier than the alternative of integrating over nn dimensions, as needed in the direct calculation of the desired moment.Comment: Published in Entropy, vol. 22, no. 6, paper 707, pages 1-29, June 2020. Available at: https://www.mdpi.com/1099-4300/22/6/70

    Tight Bounds on the R\'enyi Entropy via Majorization with Applications to Guessing and Compression

    Full text link
    This paper provides tight bounds on the R\'enyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the R\'enyi entropy of a discrete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to R\'enyi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.Comment: The paper was published in the Entropy journal (special issue on Probabilistic Methods in Information Theory, Hypothesis Testing, and Coding), vol. 20, no. 12, paper no. 896, November 22, 2018. Online available at https://www.mdpi.com/1099-4300/20/12/89

    Guessing under source uncertainty

    Full text link
    This paper considers the problem of guessing the realization of a finite alphabet source when some side information is provided. The only knowledge the guesser has about the source and the correlated side information is that the joint source is one among a family. A notion of redundancy is first defined and a new divergence quantity that measures this redundancy is identified. This divergence quantity shares the Pythagorean property with the Kullback-Leibler divergence. Good guessing strategies that minimize the supremum redundancy (over the family) are then identified. The min-sup value measures the richness of the uncertainty set. The min-sup redundancies for two examples - the families of discrete memoryless sources and finite-state arbitrarily varying sources - are then determined.Comment: 27 pages, submitted to IEEE Transactions on Information Theory, March 2006, revised September 2006, contains minor modifications and restructuring based on reviewers' comment

    Why Botnets Work: Distributed Brute-Force Attacks Need No Synchronization

    Full text link
    In September 2017, McAffee Labs quarterly report estimated that brute force attacks represent 20\% of total network attacks, making them the most prevalent type of attack ex-aequo with browser based vulnerabilities. These attacks have sometimes catastrophic consequences, and understanding their fundamental limits may play an important role in the risk assessment of password-secured systems, and in the design of better security protocols. While some solutions exist to prevent online brute-force attacks that arise from one single IP address, attacks performed by botnets are more challenging. In this paper, we analyze these distributed attacks by using a simplified model. Our aim is to understand the impact of distribution and asynchronization on the overall computational effort necessary to breach a system. Our result is based on Guesswork, a measure of the number of queries (guesses) required of an adversary before a correct sequence, such as a password, is found in an optimal attack. Guesswork is a direct surrogate for time and computational effort of guessing a sequence from a set of sequences with associated likelihoods. We model the lack of synchronization by a worst-case optimization in which the queries made by multiple adversarial agents are received in the worst possible order for the adversary, resulting in a min-max formulation. We show that, even without synchronization, and for sequences of growing length, the asymptotic optimal performance is achievable by using randomized guesses drawn from an appropriate distribution. Therefore, randomization is key for distributed asynchronous attacks. In other words, asynchronous guessers can asymptotically perform brute-force attacks as efficiently as synchronized guessers.Comment: Accepted to IEEE Transactions on Information Forensics and Securit
    corecore