40 research outputs found

    Preliminary design of a 100 kW turbine generator

    Get PDF
    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    THE ROLE OF CYTOSOLIC CALCIUM IN POTENTIATION OF MOUSE LUMBRICAL MUSCLE

    Get PDF
    Following contractile activity, fast twitch skeletal muscle exhibits increases in submaximal force known as potentiation. Although there is no consensus on the purpose of potentiation, it is known to enhance power during rapid dynamic contractions and counteract the early stages of peripheral fatigue. Potentiation is primarily attributed to phosphorylation of the myosin regulatory light chain (RLC) through a calcium-mediated process which results in increased calcium-sensitivity of crossbridge formation. However, there is a growing body of evidence showing that potentiation can be achieved in the absence of RLC phosphorylation, albeit to a lesser degree. A secondary characteristic of the potentiated contraction is an acceleration of relaxation properties, which could be teleologically beneficial to enhance the cycling rate of rapid motions (e.g. running). However, accelerated relaxation is inconsistent with elevations in calcium-sensitivity as this would tend to slow the time course and slow relaxation. Therefore there are multiple mechanisms involved in potentiation, some of which enhance crossbridge formation, and some of which enhance crossbridge detachment. A possible explanation for these events involves contraction-induced changes in the intracellular cytosolic calcium signal that triggers muscle contraction. For example, elevations in submaximal force could be achieved by increasing the amplitude of the calcium signal while enhanced relaxation speed could be achieved by a shorter duration of the calcium signal. Thus the main objective of this thesis was to investigate the contribution of changes in cytosolic Ca2+ to force potentiation. To achieve this objective, intact lumbrical muscles were extracted from the hind feet of C57BL/6 mice for use as the experimental model. The first study in this thesis examined cytosolic calcium signals during posttetanic potentiation using high (AM-fura-2 and AM-indo-1) and low (AM-furaptra) affinity calcium-sensitive fluorescent indicators to monitor resting and peak calcium respectively, both before and after a potentiating stimulation protocol of 2.5 s of 20 Hz stimulation at 37oC. This protocol resulted in an immediate 17±3% increase in twitch force (n=10; P2+ was also increased following the potentiating stimulus as indicated by increases of 11.1 ± 1.3% and 8.1 ± 1.3% in the fura-2 and indo-1 fluorescence ratios respectively. Like the force potentiation, these increases were short lived, lasting 20-30 s. No changes were detected in either the amplitude or kinetics of the Ca2+ transients following the potentiating stimulus. Western blotting analysis of the myosin heavy chain isoforms which determine the contractile phenotype of lumbrical muscle revealed predominance of fast type IIX fibres, while immunohistochemical analysis of proteins important for relaxation, namely parvalbumin, sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) 1a and SERCA2a, revealed that the expression of these proteins in lumbrical moderated those found in the soleus (slow) and EDL (fast) archetypes. Surprisingly, despite the fast phenotype of the lumbrical, it exhibited low expression of the skeletal muscle isoform of myosin light chain kinase, the enzyme responsible for phosphorylating the myosin RLC, and high expression of myosin targeting phosphatase subunit 2, the enzyme responsible for dephosphorylating the myosin RLC. These data were corroborated by a complete lack of myosin RLC phosphorylation in either the rested or potentiated states. It was thus concluded that elevations in resting cytosolic calcium concentration, in the absence of changes in the intracellular calcium transient and RLC phosphorylation, can potentiate twitch force. The next objective of this thesis was to determine if there are changes in the cytosolic calcium transient during staircase potentiation, defined as a stepwise increase in twitch force during low frequency stimulation (oC. This stimulation protocol resulted in a 26.8 ± 3.2 % increase in twitch force at 37oC (PoC (PoC than 37oC (PoC. The increases in the duration of the calcium transient were mirrored by increases in the half relaxation time of the twitch contractions at both 30 and 37oC, which had initially been reduced by ~20 and 9 % at 30 and 37oC during the first 2 s of the protocol. Therefore the degree of staircase potentiation depends, in part, on the magnitude of the decline in the amplitude and the degree of slowing of the cytosolic calcium transient. The declines in calcium transient amplitude noted above occurred simultaneously with increased rates of relaxation and abbreviated contraction times. To determine if there was a causal relationship between the reduced amplitude and the faster contractions, AM-furaptra-loaded lumbrical muscles were stimulated at 8 Hz for 2 s in the presence and absence of caffeine, an agonist of the calcium release channel. Caffeine treatment attenuated the decline of the calcium transient amplitude (PoC (PoC (P<0.05). Despite the increases in calcium and force, the relaxation times and rates of relaxation exhibited a greater acceleration following caffeine treatment (P<0.05). Therefore the relaxation-enhancing factor during potentiated twitches cannot be attributed to the calcium transient, and must be localized to changes on the myofilament. The case for inorganic phosphate as the effector is made. Similar to the findings of the posttetanic potentiation study, the resting cytosolic calcium concentration was elevated during staircase potentiation, as revealed by fura-2 ratio signals. The largest increase occurring immediately following the first twitch of the protocol. This coincided with the largest increases in force potentiation at both 30 and 37oC. This finding is in accordance with the initial conclusion that elevations in resting calcium can enhance twitch force and contribute to potentiation, though the mechanism of action is unclear. One possibility is that increases in resting calcium, sub-threshold for force production, can enhance the number of attached but non-force producing crossbridges, thereby accelerating the transition of crossbridges to force-producing states upon calcium-release following stimulation. To test this hypothesis, the resting stiffness, a measure of crossbridge attachment, of lumbrical muscles was examined before and after a potentiating stimulus of 20 Hz 2.5 s. Resting stiffness was assessed using sinusoidal length oscillations, ~0.5 nm per half sarcomere in amplitude and ranging in frequency from 10-200 Hz. Subsequent analysis revealed decreases in the elastic stiffness (P<0.05) that lasted for ~20 s which were greater in magnitude (P<0.05) than increases in viscous stiffness which only lasted for ~5 s. This finding is consistent with the disappearance of short range elastic component (SREC) upon stretch or muscle activation which is commonly attributed to a population of stable, bound crossbridges in resting muscle. Subsequent analysis using imposed length changes to eliminate the SREC prior to contraction had no effect on the amplitude or duration of a subsequent twitch or tetanic contraction, and the changes in elastic and viscous stiffness of resting muscle were identical whether SREC was ablated by a contraction or imposed length change. Therefore it appears that potentiation occurs without an associated increase in bound crossbridges at rest, and may actually occur with fewer bound crossbridges at rest than the unpotentiated state. The lack of effect may be related to the relaxation-enhancing factor discussed above, and be an important feature of skeletal muscle serving to protect against damage via an involuntary eccentric contraction. This thesis describes potentiation as a complex and important biological function which is the sum of factors that serve to enhance and oppose force production

    Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    Get PDF
    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed

    Aeronautical Engineering: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 725 reports, articles and other documents introduced into the NASA scientific and technical information system in April 1985

    Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control

    Get PDF
    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Recent Experiences in Multidisciplinary Analysis and Optimization, part 1

    Get PDF
    Papers presented at the NASA Symposium on Recent Experiences in Multidisciplinary Analysis and Optimization held at NASA Langley Research Center, Hampton, Virginia April 24 to 26, 1984 are given. The purposes of the symposium were to exchange information about the status of the application of optimization and associated analyses in industry or research laboratories to real life problems and to examine the directions of future developments. Information exchange has encompassed the following: (1) examples of successful applications; (2) attempt and failure examples; (3) identification of potential applications and benefits; (4) synergistic effects of optimized interaction and trade-offs occurring among two or more engineering disciplines and/or subsystems in a system; and (5) traditional organization of a design process as a vehicle for or an impediment to the progress in the design methodology

    Comparison of the vocabularies of the Gregg shorthand dictionary and Horn-Peterson's basic vocabulary of business letters

    Get PDF
    This study is a comparative analysis of the vocabularies of Horn and Peterson's The Basic Vocabulary of Business Letters1 and the Gregg Shorthand Dictionary.2 Both books purport to present a list of words most frequently encountered by stenographers and students of shorthand. The, Basic Vocabulary of Business Letters, published "in answer to repeated requests for data on the words appearing most frequently in business letters,"3 is a frequency list specific to business writing. Although the book carries the copyright date of 1943, the vocabulary was compiled much earlier. The listings constitute a part of the data used in the preparation of the 10,000 words making up the ranked frequency list compiled by Ernest Horn and staff and published in 1926 under the title of A Basic Writing Vocabulary: 10,000 Words Lost Commonly Used in Writing. The introduction to that publication gives credit to Miss Cora Crowder for the contribution of her Master's study at the University of Minnesota concerning words found in business writing. With additional data from supplementary sources, the complete listing represents twenty-six classes of business, as follows 1. Miscellaneous 2. Florists 3. Automobile manufacturers and sales companie
    corecore