9 research outputs found

    Cryptanalysis of a multi-party quantum key agreement protocol with single particles

    Full text link
    Recently, Sun et al. [Quant Inf Proc DOI: 10.1007/s11128-013-0569-x] presented an efficient multi-party quantum key agreement (QKA) protocol by employing single particles and unitary operations. The aim of this protocol is to fairly and securely negotiate a secret session key among NN parties with a high qubit efficiency. In addition, the authors claimed that no participant can learn anything more than his/her prescribed output in this protocol, i.e., the sub-secret keys of the participants can be kept secret during the protocol. However, here we points out that the sub-secret of a participant in Sun et al.'s protocol can be eavesdropped by the two participants next to him/her. In addition, a certain number of dishonest participants can fully determine the final shared key in this protocol. Finally, we discuss the factors that should be considered when designing a really fair and secure QKA protocol.Comment: 7 page

    Orthogonal-state-based protocols of quantum key agreement

    Full text link
    Two orthogonal-state-based protocols of quantum key agreement (QKA) are proposed. The first protocol of QKA proposed here is designed for two-party QKA, whereas the second protocol is designed for multi-party QKA. Security of these orthogonal-state-based protocols arise from monogamy of entanglement. This is in contrast to the existing protocols of QKA where security arises from the use of non-orthogonal state (non-commutativity principle). Further, it is shown that all the quantum systems that are useful for implementation of quantum dialogue and most of the protocols of secure direct quantum communication can be modified to implement protocols of QKA.Comment: 9 pages, no figur

    Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement

    Full text link
    A feasible, secure and collusion-attack-free quantum sealed-bid auction protocol is proposed using a modified scheme for multi-party circular quantum key agreement. In the proposed protocol, the set of all (nn) bidders is grouped in to ll subsets (sub-circles) in such a way that only the initiator (who prepares the quantum state to be distributed for a particular round of communication and acts as the receiver in that round) is a member of all the subsets (sub-circles) prepared for a particular round, while any other bidder is part of only a single subset. All nn bidders and auctioneer initiate one round of communication, and each of them prepares ll copies of a (r−1)\left(r-1\right)-partite entangled state (one for each sub-circle), where r=nl+1r=\frac{n}{l}+1. The efficiency and security\textcolor{blue}{{} }of the proposed protocol are critically analyzed. It is shown that the proposed protocol is free from the collusion attacks that are possible on the existing schemes of quantum sealed-bid auction. Further, it is observed that the security against collusion attack increases with the increase in ll, but that reduces the complexity (number of entangled qubits in each entangled state) of the entangled states to be used and that makes the scheme scalable and implementable with the available technologies. The additional security and scalability is shown to arise due to the use of a circular structure in place of a complete-graph or tree-type structure used earlier.Comment: 10 pages, 2 figure

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur
    corecore