8 research outputs found

    Design and experimental realization of an optimal scheme for teleportion of an nn-qubit quantum state

    Full text link
    An explicit scheme (quantum circuit) is designed for the teleportation of an nn-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources has been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general nn-qubit state considered here. A trade off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof of principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. Experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional-controlled state teleportation.Comment: 11 pages 4 figure

    Quantum Conference

    Full text link
    A notion of quantum conference is introduced in analogy with the usual notion of a conference that happens frequently in today's world. Quantum conference is defined as a multiparty secure communication task that allows each party to communicate their messages simultaneously to all other parties in a secure manner using quantum resources. Two efficient and secure protocols for quantum conference have been proposed. The security and efficiency of the proposed protocols have been analyzed critically. It is shown that the proposed protocols can be realized using a large number of entangled states and group of operators. Further, it is shown that the proposed schemes can be easily reduced to protocol for multiparty quantum key distribution and some earlier proposed schemes of quantum conference, where the notion of quantum conference was different.Comment: 12 pages, 1 figur

    General dd-level quantum multi-secret sharing scheme with cheating identification

    Full text link
    This work proposes a dd-dimensional quantum multi-secret sharing (QMSS) scheme with a cheat detection mechanism. The dealer creates the secret shares using multi access structures and a monotone span program. To detect the participant's deceit, the dealer distributes secret share shadows derived from a random invertible matrix XX to the participants, stored in the Black box. The cheat detection mechanism of the Black box identifies the participant's deceitful behavior during the secret recovery phase. Only honest participants authenticated by the Black box acquire their secret shares to recover the multiple secrets. After the Black box cheating verification, the participants reconstruct the secrets by utilizing the unitary operations and quantum Fourier transform. The proposed protocol is reliable to prevent attacks from eavesdroppers and participants. The proposed protocol provides greater versatility, security, and practicality

    A novel multi-party semiquantum private comparison protocol of size relationship with d-dimensional single-particle states

    Full text link
    By using d-level single-particle states, the first multi-party semiquantum private comparison (MSQPC) protocol which can judge the size relationship of private inputs from more than two classical users within one execution of protocol is put forward. This protocol requires the help of one quantum third party (TP) and one classical TP, both of whom are allowed to misbehave on their own but cannot conspire with anyone else. Neither quantum entanglement swapping nor unitary operations are necessary for implementing this protocol. TPs are only required to perform d-dimensional single-particle measurements. The correctness analysis validates the accuracy of the compared results. The security analysis verifies that both the outside attacks and the participant attacks can be resisted.Comment: 19 pages, 2 figures, 2 table

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47
    corecore