111,284 research outputs found
The nucleus of 103P/Hartley 2, target of the EPOXI mission
103P/Hartley 2 was selected as the target comet for the Deep Impact extended
mission, EPOXI, in October 2007. There have been no direct optical observations
of the nucleus of this comet, as it has always been highly active when
previously observed. We aimed to recover the comet near to aphelion, to a)
confirm that it had not broken up and was in the predicted position, b) to
provide astrometry and brightness information for mission planning, and c) to
continue the characterisation of the nucleus. We observed the comet at
heliocentric distances between 5.7 and 5.5 AU, using FORS2 at the VLT, at 4
epochs between May and July 2008. We performed VRI photometry on deep stacked
images to look for activity and measure the absolute magnitude and therefore
estimate the size of the nucleus. We recovered the comet near the expected
position, with a magnitude of m_R = 23.74 \pm 0.06 at the first epoch. The
comet had no visible coma, although comparison of the profile with a stellar
one showed that there was faint activity, or possibly a contribution to the
flux from the dust trail from previous activity. This activity appears to fade
at further epochs, implying that this is a continuation of activity past
aphelion from the previous apparition rather than an early start to activity
before the next perihelion. Our data imply a nucleus radius of \le 1 km for an
assumed 4% albedo; we estimate a ~6% albedo. We measure a colour of (V-R) = 0.
26 \pm 0.09.Comment: 5 pages, 4 figures, accepted for publication in A&
Follow-up observations of Comet 17P/Holmes after its extreme outburst in brightness end of October 2007
We present follow-up observations of comet 17/P Holmes after its extreme
outburst in brightness, which occurred end of October 2007. We obtained 58
V-band images of the comet between October 2007 and February 2008, using the
Cassegrain-Teleskop-Kamera (CTK) at the University Observatory Jena. We present
precise astrometry of the comet, which yields its most recent Keplerian orbital
elements. Furthermore, we show that the comet's coma expands quite linearly
with a velocity of about 1650km/s between October and December 2007. The
photometric monitoring of comet 17/P Holmes shows that its photometric activity
level decreased by about 5.9mag within 105 days after its outburst.Comment: AN accepted, 6 pages, 4 figures, 5 tabl
Frozen to death? -- Detection of comet Hale-Bopp at 30.7 AU
Comet Hale--Bopp (C/1995 O1) has been the single most significant comet
encountered by modern astronomy, still having displayed significant activity at
25.7 AU solar distance in late 2007. It is a puzzling question when and where
this activity will finally cease. Here we present new observations with the ESO
2.2m telescope at La Silla to check the activity of Hale--Bopp at 30.7 AU solar
distance. On 2010-12-04, 26 CCD images were taken with 180 s exposure times for
photometry and morphology. The comet was detected in R and had a total
brightness of 23.3+-0.2 mag, referring to an absolute brightness of
R(1,1,0)=8.3. The profile of the coma was star-like at a seeing of 1.9",
without any evidence of a coma or tail extending farther than 2.5" (=55,000 km
in projection) and exceeding 26.5 mag/arcs^2 surface brightness. The measured
total brightness corresponds to a relative total reflecting surface, a_RC, of
485 km^2, nine times less than three years before. The calculated a_RC value
would imply a nucleus with 60--65 km radius assuming 4% albedo. This size
estimate is in significant contradiction with the previous results scattering
around 35 km. Therefore we suggest that the comet may still be in a low-level
activity, despite the lack of a prominent coma. Alternatively, if the nucleus
is already dormant, the albedo should be as high as 13%, assuming a radius of
35 km. With this observation, Hale--Bopp has been the most distant comet ever
observed, far beyond the orbit of Neptune.Comment: 4 pages, accepted by A&
Optical investigation of Comet Halley
The physical properties of Comet P/Halley are being monitored from the ground using state of the art optical detectors. The long time base (1982-present) of the observations provides a unique record of the development of activity in a single comet. In addition, physical properties of other comets are measured to provide a reference against which Comet Halley may be compared. Results for the past year include: (1) publication of the first results on the surface brightness profiles of dust comets; (2) charge coupled device measurements of Comet Bowell show that the activity of comets can persist at least to heliocentric distances R = 13.6 AU; (3) a study of the back-scattering phase angle dependences of 5 comets (including Halley) shows evidence for small linear phase coefficients in each case; (4) temporal monitoring of P/Halley continues
Chandra's Close Encounter with the Disintegrating Comets 73P/2006 (Schwassmann--Wachmann--3) Fragment B and C/1999 S4 (LINEAR)
On May 23, 2006 we used the ACIS-S instrument on the Chandra X-ray
Observatory (CXO) to study the X-ray emission from the B fragment of comet
73P/2006 (Schwassmann-Wachmann 3) (73P/B). We obtained a total of 20 ks of CXO
observation time of Fragment B, and also investigated contemporaneous ACE and
SOHO solar wind physical data. The CXO data allow us to spatially resolve the
detailed structure of the interaction zone between the solar wind and the
fragment's coma at a resolution of ~ 1,000 km, and to observe the X-ray
emission due to multiple comet--like bodies. We detect a change in the spectral
signature with the ratio of the CV/OVII line increasing with increasing
collisional opacity as predicted by Bodewits \e (2007). The line fluxes arise
from a combination of solar wind speed, the species that populate the wind and
the gas density of the comet. We are able to understand some of the observed
X-ray morphology in terms of non-gravitational forces that act upon an actively
outgassing comet's debris field. We have used the results of the Chandra
observations on the highly fragmented 73P/B debris field to re-analyze and
interpret the mysterious emission seen from comet C/1999 S4 (LINEAR) on August
1st, 2000, after the comet had completely disrupted. We find the physical
situations to be similar in both cases, with extended X-ray emission due to
multiple, small outgassing bodies in the field of view. Nevertheless, the two
comets interacted with completely different solar winds, resulting in
distinctly different spectra.Comment: accepted by ApJ, 44 Pages, including 4 tables and 14 figure
WISE/NEOWISE Observations of Comet 103P/Hartley 2
We report results based on mid-infrared photometry of comet 103P/Hartley 2 taken during 2010 May 4-13 (when the comet was at a heliocentric distance of 2.3 AU, and an observer distance of 2.0 AU) by the Wide-field Infrared Survey Explorer. Photometry of the coma at 22 μm and data from the University of Hawaii 2.2 m telescope obtained on 2010 May 22 provide constraints on the dust particle size distribution, d log n/d log m, yielding power-law slope values of alpha = –0.97 ± 0.10, steeper than that found for the inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. The extracted nucleus signal at 12 μm is consistent with a body of average spherical radius of 0.6 ± 0.2 km (one standard deviation), assuming a beaming parameter of 1.2. The 4.6 μm band signal in excess of dust and nucleus reflected and thermal contributions may be attributed to carbon monoxide or carbon dioxide emission lines and provides limits and estimates of species production. Derived carbon dioxide coma production rates are 3.5(± 0.9) × 10^(24) molecules per second. Analyses of the trail signal present in the stacked image with an effective exposure time of 158.4 s yields optical-depth values near 9 × 10^(–10) at a delta mean anomaly of 0.2 deg trailing the comet nucleus, in both 12 and 22 μm bands. A minimum chi-squared analysis of the dust trail position yields a beta-parameter value of 1.0 × 10^(–4), consistent with a derived mean trail-grain diameter of 1.1/ρ cm for grains of ρ g cm^(–3) density. This leads to a total detected trail mass of at least 4 × 10^(10) ρ kg
Ultraviolet cometary spectrophotometry
During the 13 shifts dedicated to observations of Comet Bradfield (including the two European shifts), five high dispersion exposures were obtained with the LWR camera, 27 low dispersion images with the LWR camera, and 36 low dispersion images with the SWP camera of which 5 were observations of the geocoronal background and 4 were taken in a serendipity mode while the nucleus of the comet was centered on the large aperture of the LWR camera
- …
