9 research outputs found

    A hybrid pan-sharpening approach using maximum local extrema

    Get PDF
    Mixing or combining different elements for getting enhanced version, is practiced across various areas in real life. Pan-sharpening is a similar technique used in the digital world; a process to combine two images into a fused image that comprises more detailed information. Images referred herein are Panchromatic (PAN) and Multispectral (MS) images. This paper presents a pansharpening algorithm which integrates multispectral and panchromatic images to generate an improved multispectral image. This technique merges the Discrete wavelet transform (WT) and Intensity-Hue-Saturation (IHS) through separate fusing criterion for choosing an approximate and detail sub-images. Whereas the maximal local extrema are used for merging detail sub-images and finally merged high-resolution image is reconstructed through inverse transform of wavelet and IHS. The proposed fusion approach enhances the superiority of the resultant fused image is demonstrated by quality measures like CORR, RMSE, PFE, SSIM, SNR and PSNR with the help of satellite Worldview-II images. The proposed algorithm is correlated with the other fusion techniques through empirical outcomes proves the superiority of the final merged image in terms of resolutions than the others

    REMOTE SENSING IMAGE FUSION USING ICA AND OPTIMIZED WAVELET TRANSFORM

    Get PDF

    A New Robust Multi focus image fusion Method

    Get PDF
    In today's digital era, multi focus picture fusion is a critical problem in the field of computational image processing. In the field of fusion information, multi-focus picture fusion has emerged as a significant research subject. The primary objective of multi focus image fusion is to merge graphical information from several images with various focus points into a single image with no information loss. We provide a robust image fusion method that can combine two or more degraded input photos into a single clear resulting output image with additional detailed information about the fused input images. The targeted item from each of the input photographs is combined to create a secondary image output. The action level quantities and the fusion rule are two key components of picture fusion, as is widely acknowledged. The activity level values are essentially implemented in either the "spatial domain" or the "transform domain" in most common fusion methods, such as wavelet. The brightness information computed from various source photos is compared to the laws developed to produce brightness / focus maps by using local filters to extract high-frequency characteristics. As a result, the focus map provides integrated clarity information, which is useful for a variety of Multi focus picture fusion problems. Image fusion with several modalities, for example. Completing these two jobs, on the other hand. As a consequence, we offer a strategy for achieving good fusion performance in this study paper. A Convolutional Neural Network (CNN) was trained on both high-quality and blurred picture patches to represent the mapping. The main advantage of this idea is that it can create a CNN model that can provide both the Activity level Measurement" and the Fusion rule, overcoming the limitations of previous fusion procedures. Multi focus image fusion is demonstrated using microscopic images, medical imaging, computer visualization, and Image information improvement is also a benefit of multi-focus image fusion. Greater precision is necessary in terms of target detection and identification. Face recognition" and a more compact work load, as well as enhanced system consistency, are among the new features
    corecore