162 research outputs found

    Some Placement Techniques of Test Components Inspired by Fog Computing Approaches

    Get PDF
    In this work we are interested in placing test components for Internet of Things (IoT) and Smart Cities. Our work is inspired by similar works aiming the placement of application components in Fog computational nodes. First we give an overview about the decision variables to consider. Then, we define several types of constraints that may be included in the placement problem. Moreover, We list a set of possible Objectives Functions to maximize or minimize. Finally, we propose some algorithms and techniques to solve the considered Test Component Placement Problem (TCPP) taken from the literature

    Continuous Reasoning for Managing Next-Gen Distributed Applications.

    Get PDF
    Continuous reasoning has proven effective in incrementally analysing changes in application codebases within Continuous Integration/Continuous Deployment (CI/CD) software release pipelines. In this article, we present a novel declarative continuous reasoning approach to support the management of multi-service applications over the Cloud-IoT continuum, in particular when infrastructure variations impede meeting application's hardware, software, IoT or network QoS requirements. We show how such an approach brings considerable speed-ups compared to non-incremental reasoning

    Vue d'ensemble du problème de placement de service dans Fog and Edge Computing

    Get PDF
    To support the large and various applications generated by the Internet of Things(IoT), Fog Computing was introduced to complement the Cloud Computing and offer Cloud-like services at the edge of the network with low latency and real-time responses. Large-scale, geographical distribution and heterogeneity of edge computational nodes make service placement insuch infrastructure a challenging issue. Diversity of user expectations and IoT devices characteristics also complexify the deployment problem. This paper presents a survey of current research conducted on Service Placement Problem (SPP) in the Fog/Edge Computing. Based on a new clas-sification scheme, a categorization of current proposals is given and identified issues and challenges are discussed.Pour prendre en charge les applications volumineuses et variées générées par l'Internet des objets (IoT), le Fog Computing a été introduit pour compléter le Cloud et exploiter les ressources de calcul en périphérie du réseau afin de répondre aux besoins de calcul à faible latence et temps réel des applications. La répartition géographique à grande échelle et l'hétérogénéité des noeuds de calcul de périphérie rendent difficile le placement de services dans une telle infrastructure. La diversité des attentes des utilisateurs et des caractéristiques des périphériques IoT complexifie également le probllème de déploiement. Cet article présente une vue d'ensemble des recherches actuelles sur le problème de placement de service (SPP) dans l'informatique Fog et Edge. Sur la base d'un nouveau schéma de classification, les solutions présentées dans la littérature sont classées et les problèmes et défis identifiés sont discutés

    Vue d'ensemble du problème de placement de service dans Fog and Edge Computing

    Get PDF
    To support the large and various applications generated by the Internet of Things(IoT), Fog Computing was introduced to complement the Cloud Computing and offer Cloud-like services at the edge of the network with low latency and real-time responses. Large-scale, geographical distribution and heterogeneity of edge computational nodes make service placement insuch infrastructure a challenging issue. Diversity of user expectations and IoT devices characteristics also complexify the deployment problem. This paper presents a survey of current research conducted on Service Placement Problem (SPP) in the Fog/Edge Computing. Based on a new clas-sification scheme, a categorization of current proposals is given and identified issues and challenges are discussed.Pour prendre en charge les applications volumineuses et variées générées par l'Internet des objets (IoT), le Fog Computing a été introduit pour compléter le Cloud et exploiter les ressources de calcul en périphérie du réseau afin de répondre aux besoins de calcul à faible latence et temps réel des applications. La répartition géographique à grande échelle et l'hétérogénéité des noeuds de calcul de périphérie rendent difficile le placement de services dans une telle infrastructure. La diversité des attentes des utilisateurs et des caractéristiques des périphériques IoT complexifie également le probllème de déploiement. Cet article présente une vue d'ensemble des recherches actuelles sur le problème de placement de service (SPP) dans l'informatique Fog et Edge. Sur la base d'un nouveau schéma de classification, les solutions présentées dans la littérature sont classées et les problèmes et défis identifiés sont discutés

    Towards end-to-end resource provisioning in Fog Computing over Low Power Wide Area Networks

    Get PDF
    Recently, with the advent of the Internet of Things (IoT), Smart Cities have emerged as a potential business opportunity for most cloud service providers. However, centralized cloud architectures cannot sustain the requirements imposed by many IoT services. High mobility coverage and low latency constraints are among the strictest requirements, making centralized solutions impractical. In response, theoretical foundations of Fog Computing have been introduced to set up a distributed cloud infrastructure by placing computational resources close to end-users. However, the acceptance of its foundational concepts is still in its early stages. A key challenge still to answer is Service Function Chaining (SFC) in Fog Computing, in which services are connected in a specific order forming a service chain to fully leverage on network softwarization. Also, Low Power Wide Area Networks (LPWANs) have been getting significant attention. Opposed to traditional wireless technologies, LPWANs are focused on low bandwidth communications over long ranges. Despite their tremendous potential, many challenges still arise concerning the deployment and management of these technologies, making their wide adoption difficult for most service providers. In this article, a Mixed Integer Linear Programming (MILP) formulation for the IoT service allocation problem is proposed, which takes SFC concepts, different LPWAN technologies and multiple optimization objectives into account. To the best of our knowledge, our work goes beyond the current state-of-the-art by providing a complete end-to-end (E2E) resource provisioning in Fog-cloud environments while considering cloud and wireless network requirements. Evaluations have been performed to evaluate in detail the proposed MILP formulation for Smart City use cases. Results show clear trade-offs between the different provisioning strategies. Our work can serve as a benchmark for resource provisioning research in Fog-cloud environments since the model approach is generic and can be applied to a wide range of IoT use cases

    Optimizing task allocation for edge compute micro-clusters

    Get PDF
    There are over 30 billion devices at the network edge. This is largely driven by the unprecedented growth of the Internet-of-Things (IoT) and 5G technologies. These devices are being used in various applications and technologies, including but not limited to smart city systems, innovative agriculture management systems, and intelligent home systems. Deployment issues like networking and privacy problems dictate that computing should occur close to the data source at or near the network edge. Edge and fog computing are recent decentralised computing paradigms proposed to augment cloud services by extending computing and storage capabilities to the network’s edge to enable executing computational workloads locally. The benefits can help to solve issues such as reducing the strain on networking backhaul, improving network latency and enhancing application responsiveness. Many edge and fog computing deployment solutions and infrastructures are being employed to deliver cloud resources and services at the edge of the network — for example, cloudless and mobile edge computing. This thesis focuses on edge micro-cluster platforms for edge computing. Edge computing micro-cluster platforms are small, compact, and decentralised groups of interconnected computing resources located close to the edge of a network. These micro-clusters can typically comprise a variety of heterogeneous but resource-constrained computing resources, such as small compute nodes like Single Board Computers (SBCs), storage devices, and networking equipment deployed in local area networks such as smart home management. The goal of edge computing micro-clusters is to bring computation and data storage closer to IoT devices and sensors to improve the performance and reliability of distributed systems. Resource management and workload allocation represent a substantial challenge for such resource-limited and heterogeneous micro-clusters because of diversity in system architecture. Therefore, task allocation and workload management are complex problems in such micro-clusters. This thesis investigates the feasibility of edge micro-cluster platforms for edge computation. Specifically, the thesis examines the performance of micro-clusters to execute IoT applications. Furthermore, the thesis involves the evaluation of various optimisation techniques for task allocation and workload management in edge compute micro-cluster platforms. This thesis involves the application of various optimisation techniques, including simple heuristics-based optimisations, mathematical-based optimisation and metaheuristic optimisation techniques, to optimise task allocation problems in reconfigurable edge computing micro-clusters. The implementation and performance evaluations take place in a configured edge realistic environment using a constructed micro-cluster system comprised of a group of heterogeneous computing nodes and utilising a set of edge-relevant applications benchmark. The research overall characterises and demonstrates a feasible use case for micro-cluster platforms for edge computing environments and provides insight into the performance of various task allocation optimisation techniques for such micro-cluster systems

    Edge/Fog Computing Technologies for IoT Infrastructure

    Get PDF
    The prevalence of smart devices and cloud computing has led to an explosion in the amount of data generated by IoT devices. Moreover, emerging IoT applications, such as augmented and virtual reality (AR/VR), intelligent transportation systems, and smart factories require ultra-low latency for data communication and processing. Fog/edge computing is a new computing paradigm where fully distributed fog/edge nodes located nearby end devices provide computing resources. By analyzing, filtering, and processing at local fog/edge resources instead of transferring tremendous data to the centralized cloud servers, fog/edge computing can reduce the processing delay and network traffic significantly. With these advantages, fog/edge computing is expected to be one of the key enabling technologies for building the IoT infrastructure. Aiming to explore the recent research and development on fog/edge computing technologies for building an IoT infrastructure, this book collected 10 articles. The selected articles cover diverse topics such as resource management, service provisioning, task offloading and scheduling, container orchestration, and security on edge/fog computing infrastructure, which can help to grasp recent trends, as well as state-of-the-art algorithms of fog/edge computing technologies
    • …
    corecore