4 research outputs found

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Combining a Volatile and Nonvolatile Memristor in Artificial Synapse to Improve Learning in Spiking Neural Networks

    No full text
    International audienceWith the end of Moore's law in sight, we need new computing architectures to satisfy the increasing demands of big data processing. Neuromorphic architectures are good candidates to low energy computing for recognition and classification tasks. We propose an event-based spiking neural network architecture based on artificial synapses. We introduce a novel synapse box that is able to forget and remember by inspiration from biological synapses. Two different volatile and nonvolatile memristor devices are combined in the synapse box. To evaluate the effectiveness of our proposal, we use system-level simulation in our Neural Network Scalable Spik-ing Simulator (N2S3) using the MNIST handwritten digit recognition dataset. The first results show better performance of our novel synapse than the traditional nonvolatile artificial synapses
    corecore