2,855 research outputs found

    Combining word embeddings and feature embeddings for fine-grained relation extraction

    Get PDF
    Abstract Compositional embedding models build a representation for a linguistic structure based on its component word embeddings. While recent work has combined these word embeddings with hand crafted features for improved performance, it was restricted to a small number of features due to model complexity, thus limiting its applicability. We propose a new model that conjoins features and word embeddings while maintaing a small number of parameters by learning feature embeddings jointly with the parameters of a compositional model. The result is a method that can scale to more features and more labels, while avoiding overfitting. We demonstrate that our model attains state-of-the-art results on ACE and ERE fine-grained relation extraction

    Improved Relation Extraction with Feature-Rich Compositional Embedding Models

    Full text link
    Compositional embedding models build a representation (or embedding) for a linguistic structure based on its component word embeddings. We propose a Feature-rich Compositional Embedding Model (FCM) for relation extraction that is expressive, generalizes to new domains, and is easy-to-implement. The key idea is to combine both (unlexicalized) hand-crafted features with learned word embeddings. The model is able to directly tackle the difficulties met by traditional compositional embeddings models, such as handling arbitrary types of sentence annotations and utilizing global information for composition. We test the proposed model on two relation extraction tasks, and demonstrate that our model outperforms both previous compositional models and traditional feature rich models on the ACE 2005 relation extraction task, and the SemEval 2010 relation classification task. The combination of our model and a log-linear classifier with hand-crafted features gives state-of-the-art results.Comment: 12 pages for EMNLP 201

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    Multitask Learning for Fine-Grained Twitter Sentiment Analysis

    Get PDF
    Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask approach based on a recurrent neural network that benefits by jointly learning them. Our study demonstrates the potential of multitask models on this type of problems and improves the state-of-the-art results in the fine-grained sentiment classification problem.Comment: International ACM SIGIR Conference on Research and Development in Information Retrieval 201
    • …
    corecore