8,388 research outputs found

    Employing Emotion Cues to Verify Speakers in Emotional Talking Environments

    Full text link
    Usually, people talk neutrally in environments where there are no abnormal talking conditions such as stress and emotion. Other emotional conditions that might affect people talking tone like happiness, anger, and sadness. Such emotions are directly affected by the patient health status. In neutral talking environments, speakers can be easily verified, however, in emotional talking environments, speakers cannot be easily verified as in neutral talking ones. Consequently, speaker verification systems do not perform well in emotional talking environments as they do in neutral talking environments. In this work, a two-stage approach has been employed and evaluated to improve speaker verification performance in emotional talking environments. This approach employs speaker emotion cues (text-independent and emotion-dependent speaker verification problem) based on both Hidden Markov Models (HMMs) and Suprasegmental Hidden Markov Models (SPHMMs) as classifiers. The approach is comprised of two cascaded stages that combines and integrates emotion recognizer and speaker recognizer into one recognizer. The architecture has been tested on two different and separate emotional speech databases: our collected database and Emotional Prosody Speech and Transcripts database. The results of this work show that the proposed approach gives promising results with a significant improvement over previous studies and other approaches such as emotion-independent speaker verification approach and emotion-dependent speaker verification approach based completely on HMMs.Comment: Journal of Intelligent Systems, Special Issue on Intelligent Healthcare Systems, De Gruyter, 201

    Domain Adaptation for Statistical Classifiers

    Full text link
    The most basic assumption used in statistical learning theory is that training data and test data are drawn from the same underlying distribution. Unfortunately, in many applications, the "in-domain" test data is drawn from a distribution that is related, but not identical, to the "out-of-domain" distribution of the training data. We consider the common case in which labeled out-of-domain data is plentiful, but labeled in-domain data is scarce. We introduce a statistical formulation of this problem in terms of a simple mixture model and present an instantiation of this framework to maximum entropy classifiers and their linear chain counterparts. We present efficient inference algorithms for this special case based on the technique of conditional expectation maximization. Our experimental results show that our approach leads to improved performance on three real world tasks on four different data sets from the natural language processing domain
    • …
    corecore