5 research outputs found

    Deep Learning Machine using Hierarchical Cluster Features

    Get PDF
    Deep learning of multi-layer computational models allowed processing to recognize data representation at multiple levels of abstraction. These techniques have greatly improved the latest ear recognition technology. PNN is a type of radiative basis for classification problems and is based on the Bayes decision-making base, which reduces the expected error of classification. In this paper, strong features of images are used to give a good result, therefore, SIFT method using these features after adding improvements and developments. This method was one of the powerful algorithms in matching that needed to find energy pixels. This method gives stronger feature on features and gives a large number of a strong pixel, which is considered a center and neglected the remainder of it in our work. Each pixel of which is constant for image translation, scaling, rotation, and embedded lighting changes in lighting or 3D projection. Therefore, the interpretation is developed by using a hierarchical cluster method; to assign a set of properties (find the approximation between pixels) were classified into one

    Authentication of Students and Students’ Work in E-Learning : Report for the Development Bid of Academic Year 2010/11

    Get PDF
    Global e-learning market is projected to reach $107.3 billion by 2015 according to a new report by The Global Industry Analyst (Analyst 2010). The popularity and growth of the online programmes within the School of Computer Science obviously is in line with this projection. However, also on the rise are students’ dishonesty and cheating in the open and virtual environment of e-learning courses (Shepherd 2008). Institutions offering e-learning programmes are facing the challenges of deterring and detecting these misbehaviours by introducing security mechanisms to the current e-learning platforms. In particular, authenticating that a registered student indeed takes an online assessment, e.g., an exam or a coursework, is essential for the institutions to give the credit to the correct candidate. Authenticating a student is to ensure that a student is indeed who he says he is. Authenticating a student’s work goes one step further to ensure that an authenticated student indeed does the submitted work himself. This report is to investigate and compare current possible techniques and solutions for authenticating distance learning student and/or their work remotely for the elearning programmes. The report also aims to recommend some solutions that fit with UH StudyNet platform.Submitted Versio

    Combining Fisher Discriminant Analysis and Probabilistic Neural Network for Effective On-line Signature Recognition

    No full text
    The advent of new technologies enables capturing the dynamic of a signature. This has opened a new perspective for the possible use of signatures as a basis for an authentication system that is accurate and trustworthy enough to be integrated in practical applications. Automatic online signature recognition and verification is one of the biometric techniques being the subject of a growing and intensive research activity. In this paper, we address this problem and we propose a two-stage approach for personal identification. The first stage consists in the use of linear discriminant analysis to reduce the dimensionality of the feature space while maintaining discrimination between user classes. The second stage consists in tailoring a probabilistic neural network for effective classification purposes. Several experiments have been conducted using SVC2004 database. Very high classification rates have been achieved showing the effectiveness of the proposed approach

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    E-INVIGILATION OF E-ASSESSMENTS

    Get PDF
    E-learning and particularly distance-based learning is becoming an increasingly important mechanism for education. A leading Virtual Learning Environment (VLE) reports a user base of 70 million students and 1.2 million teachers across 7.5 million courses. Whilst e-learning has introduced flexibility and remote/distance-based learning, there are still aspects of course delivery that rely upon traditional approaches. The most significant of these is examinations. The lack of being able to provide invigilation in a remote-mode has restricted the types of assessments, with exams or in-class test assessments proving difficult to validate. Students are still required to attend physical testing centres in order to ensure strict examination conditions are applied. Whilst research has begun to propose solutions in this respect, they fundamentally fail to provide the integrity required. This thesis seeks to research and develop an e-invigilator that will provide continuous and transparent invigilation of the individual undertaking an electronic based exam or test. The analysis of the e-invigilation solutions has shown that the suggested approaches to minimise cheating behaviours during the online test have varied. They have suffered from a wide range of weaknesses and lacked an implementation achieving continuous and transparent authentication with appropriate security restrictions. To this end, the most transparent biometric approaches are identified to be incorporated in an appropriate solution whilst maintaining security beyond the point-of-entry. Given the existing issues of intrusiveness and point-of-entry user authentication, a complete architecture has been developed based upon maintaining student convenience but providing effective identity verification throughout the test, rather than merely at the beginning. It also provides continuous system-level monitoring to prevent cheating, as well as a variety of management-level functionalities for creating and managing assessments including a prioritised and usable interface in order to enable the academics to quickly verify and check cases of possible cheating. The research includes a detailed discussion of the architecture requirements, components, and complete design to be the core of the system which captures, processes, and monitors students in a completely controlled e-test environment. In order to highlight the ease of use and lightweight nature of the system, a prototype was developed. Employing student face recognition as the most transparent multimodal (2D and 3D modes) biometrics, and novel security features through eye tracking, head movements, speech recognition, and multiple faces detection in order to enable a robust and flexible e-invigilation approach. Therefore, an experiment (Experiment 1) has been conducted utilising the developed prototype involving 51 participants. In this experiment, the focus has been mainly upon the usability of the system under normal use. The FRR of those 51 legitimate participants was 0 for every participant in the 2D mode; however, it was 0 for 45 of them and less than 0.096 for the rest 6 in the 3D mode. Consequently, for all the 51 participants of this experiment, on average, the FRR was 0 in 2D facial recognition mode, however, in 3D facial recognition mode, it was 0.048. Furthermore, in order to evaluate the robustness of the approach against targeted misuse 3 participants were tasked with a series of scenarios that map to typical misuse (Experiment 2). The FAR was 0.038 in the 2D mode and 0 in the 3D mode. The results of both experiments support the feasibility, security, and applicability of the suggested system. Finally, a series of scenario-based evaluations, involving the three separate stakeholders namely: Experts, Academics (qualitative-based surveys) and Students (a quantitative-based and qualitative-based survey) have also been utilised to provide a comprehensive evaluation into the effectiveness of the proposed approach. The vast majority of the interview/feedback outcomes can be considered as positive, constructive and valuable. The respondents agree with the idea of continuous and transparent authentication in e-assessments as it is vital for ensuring solid and convenient security beyond the point-of-entry. The outcomes have also supported the feasibility and practicality of the approach, as well as the efficiency of the system management via well-designed and smart interfaces.The Higher Committee for Education Development in Iraq (HCED
    corecore