3,291 research outputs found

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Combining deep and handcrafted image features for MRI brain scan classification

    Get PDF
    Progresses in the areas of artificial intelligence, machine learning, and medical imaging technologies have allowed the development of the medical image processing field with some astonishing results in the last two decades. These innovations enabled the clinicians to view the human body in high-resolution or three-dimensional cross-sectional slices, which resulted in an increase in the accuracy of the diagnosis and the examination of patients in a non-invasive manner. The fundamental step for MRI brain scans classifiers is their ability to extract meaningful features. As a result, many works have proposed different methods for features extraction to classify the abnormal growths in brain MRI scans. More recently, the application of deep learning algorithms to medical imaging lead to impressive performance enhancements in classifying and diagnosing complicated pathologies such as brain tumors. In this study, a deep learning feature extraction algorithm is proposed to extract the relevant features from MRI brain scans. In parallel, handcrafted features are extracted using the modified grey level co-occurrence matrix (MGLCM) method. Subsequently, the extracted relevant features are combined with handcrafted features to improve the classification process of MRI brain scans with SVM used as the classifier. The obtained results proved that the combination of the deep learning approach and the handcrafted features extracted by MGLCM improves the accuracy of classification of the SVM classifier up to 99.30%
    • …
    corecore