11 research outputs found

    Development and performance evaluation of a multistatic radar system

    Get PDF
    Multistatic radar systems are of emerging interest as they can exploit spatial diversity, enabling improved performance and new applications. Their development is being fuelled by advances in enabling technologies in such fields as communications and Digital Signal Processing (DSP). Such systems differ from typical modern active radar systems through consisting of multiple spatially diverse transmitter and receiver sites. Due to this spatial diversity, these systems present challenges in managing their operation as well as in usefully combining the multiple sources of information to give an output to the radar operator. In this work, a novel digital Commercial Off-The-Shelf (COTS) based coherent multistatic radar system designed at University College London, named ‘NetRad’, has been developed to produce some of the first published experimental results, investigating the challenges of operating such a system, and determining what level of performance might be achievable. Full detail of the various stages involved in the combination of data from the component transmitter-receiver pairs within a multistatic system is investigated, and many of the practical issues inherent are discussed. Simulation and subsequent experimental verification of several centralised and decentralised detection algorithms in terms of localisation (resolution and parameter estimation) of targets was undertaken. The computational cost of the DSP involved in multistatic data fusion is also considered. This gave a clear demonstration of several of the benefits of multistatic radar. Resolution of multiple targets that would have been unresolvable in a conventional monostatic system was shown. Targets were also shown to be plotted as two-dimensional vector position and velocities from use of time delay and Doppler shift information only. A range of targets were used including some such as walking people which were particularly challenging due to the variability of Radar Cross Section (RCS). Performance improvements were found to be dependant on the type of multistatic radar, method of data fusion and target characteristics in question. It is likely that future work will look to further explore the optimisation of multistatic radar for the various measures of performance identified and discussed in this work

    Radar-Based Multi-Target Classification Using Deep Learning

    Get PDF
    Real-time, radar-based human activity and target recognition has several applications in various fields. Examples include hand gesture recognition, border and home surveillance, pedestrian recognition for automotive safety and fall detection for assisted living. This dissertation sought to improve the speed and accuracy of a previously developed model classifying human activity and targets using radar data for outdoor surveillance purposes. An improvement in accuracy and speed of classification helps surveillance systems to provide reliable results on time. For example, the results can be used to intercept trespassers, poachers or smugglers. To achieve these objectives, radar data was collected using a C-band pulse-Doppler radar and converted to spectrograms using the Short-time Fourier transform (STFT) algorithm. Spectrograms of the following classes were utilised in classification: one human walking, two humans walking, one human running, moving vehicles, a swinging sphere and clutter/noise. A seven-layer residual network was proposed, which utilised batch normalisation (BN), global average pooling (GAP), and residual connections to achieve a classification accuracy of 92.90% and 87.72% on the validation and test data, respectively. Compared to the previously proposed model, this represented a 10% improvement in accuracy on the validation data and a 3% improvement on the test data. Applying model quantisation provided up to 3.8 times speedup in inference, with a less than 0.4% accuracy drop on both the validation and test data. The quantised model could support a range of up to 89.91 kilometres in real-time, allowing it to be used in radars that operate within this range

    Robust distributed resource allocation for cellular vehicle-to-vehicle communication

    Get PDF
    Mit Release 14 des LTE Standards unterstĂŒtzt dieser die direkte Fahrzeug-zu-Fahrzeug-Kommunikation ĂŒber den Sidelink. Diese Dissertation beschĂ€ftigt sich mit dem Scheduling Modus 4, einem verteilten MAC-Protokoll ohne Involvierung der Basisstation, das auf periodischer Wiederverwendung von Funkressourcen aufbaut. Der Stand der Technik und eine eigene Analyse des Protokolls decken verschiedene Probleme auf. So wiederholen sich Kollisionen von Paketen, wodurch manche Fahrzeuge fĂŒr lĂ€ngere Zeit keine sicherheitskritischen Informationen verbreiten können. Kollisionen entstehen vermehrt auch dadurch, dass Hidden-Terminal-Probleme in Kauf genommen werden oder verĂ€nderliche PaketgrĂ¶ĂŸen und -raten schlecht unterstĂŒtzt werden. Deshalb wird ein Ansatz namens "Scheduling based on Acknowledgement Feedback Exchange" vorgeschlagen. ZunĂ€chst wird eine Funkreservierung in mehrere ineinander verschachtelte Unter-Reservierungen mit verschiedenen Funkressourcen unterteilt, was die Robustheit gegenĂŒber wiederholenden Kollisionen erhöht. Dies ist die Grundlage fĂŒr eine verteilte Staukontrolle, die die PeriodizitĂ€tseigenschaft nicht verletzt. Außerdem können so verĂ€nderliche PaketgrĂ¶ĂŸen oder -raten besser abgebildet werden. Durch die periodische Wiederverwendung können Acknowledgements fĂŒr Funkressourcen statt fĂŒr Pakete ausgesendet werden. Diese können in einer Bitmap in den Padding-Bits ĂŒbertragen werden. Mittels der Einbeziehung dieser Informationen bei der Auswahl von Funkressourcen können Hidden-Terminal-Probleme effizient vermieden werden, da die Acknowledgements auch eine Verwendung dieser Funkressource ankĂŒndigen. Kollisionen können nun entdeckt und eine Wiederholung vermieden werden. Die Evaluierung des neuen MAC-Protokolls wurde zum großen Teil mittels diskreter-Event-Simulationen durchgefĂŒhrt, wobei die Bewegung jedes einzelnen Fahrzeuges simuliert wurde. Der vorgeschlagene Ansatz fĂŒhrt zu einer deutlich erhöhten Paketzustellrate. Die Verwendung einer anwendungsbezogenen Awareness-Metrik zeigt, dass die ZuverlĂ€ssigkeit der Kommunikation durch den Ansatz deutlich verbessert werden kann. Somit zeigt sich der prĂ€sentierte Ansatz als vielversprechende Lösung fĂŒr die erheblichen Probleme, die der LTE Modus 4 mit sich bringt.The LTE Standard added support for a direct vehicle-to-vehicle communication via the Sidelink with Release 14. This dissertation focuses on the scheduling Mode 4, a distributed MAC protocol without involvement of the base station, which requires the periodic reuse of radio resources. The state of the art and a own analysis of this protocol unveil multiple problems. For example, packet collisions repeat in time, so that some vehicles are unable to distribute safety-critical information for extended periods of time. Collisions also arise due to the hidden-terminal problem, which is simply put up with in Mode 4. Additionally, varying packet sizes or rates can hardly be supported. Consequently, an approach called "Scheduling based on Acknowledgement Feedback Exchange" is proposed. Firstly, a reservation of radio resources is split into multiple, interleaved sub-reservations that use different radio resources. This increases the robustness against repeating collisions. It is also the basis for a distributed congestion control that does not violate the periodicity. Moreover, different packet rates or sizes can be supported. The periodic reuse of radio resources enables the transmission of acknowledgements for radio resources instead of packets. These can be transmitted in a bitmap inside the padding bits. Hidden-terminal problems can be mitigated by considering the acknowledgements when selecting radio resources as they announce the use of these radio resources. Collisions can also be detected and prevented from re-occurring. The evaluation of the MAC protocol is mostly performed using discrete-event simulations, which model the movement of every single vehicle. The presented approach leads to a clear improvement of the packet delivery rate. The use of an application-oriented metric shows that the communication robustness can be improved distinctly. The proposed approach hence presents itself as a promising solution for the considerable problems of LTE Mode 4

    Measurement and modelling of bistatic sea clutter

    Get PDF
    There is a growing interest in bistatic radars; however, such systems cannot reach their full potential unless the designer has a proper understanding of the environment in which they operate. Rather little information has been published on bistatic clutter and out-of-plane bistatic sea clutter in particular. This is due to a number of factors including the inherent complexity of conducting bistatic radar trials and the resulting lack of high quality bistatic data. In this thesis the collection and analysis of a unique set of bistatic sea clutter data is described. To achieve this objective a novel multistatic radar system was developed. The nodes do not need to be physically connected. This system has a peak transmitted power of more than 500 W. Synchronisation in time and frequency was achieved using GPS disciplined oscillators built and designed at the University of Cape Town. Using the above system simultaneous bistatic and monostatic sea clutter and target signatures were recorded in the UK and South Africa at various geometries and weather conditions. Parts of this unique data set related to out-of-plane bistatic sea clutter was analysed in this thesis. The data covered both co- and cross-polarised sea clutter data at low grazing angles with bistatic angles between 30° and 120°. Data sets covering a range of conditions with sea states from 2 – 5. Using the recorded data it was shown that the ratio of the bistatic normalised radar cross section to the monostatic normalised radar cross section dropped as the scattering angle was increased until the scattering angle was around 90°. Furthermore, the cross-polarised bistatic normalised radar cross section was found to be larger than the cross-polarised monostatic normalised radar cross section when the scattering angle was around 90°. A new empirical model for predicting bistatic normalised radar cross section has been developed. The model is applicable to both in-plane and out-of-plane geometries. The model was able to provide a good fit to both UCL and external data. The temporal correlation properties of both monostatic and bistatic data were studied. It was found that the speckle component of both bistatic and monostatic clutter decorrelated in tens of milliseconds, with the decorrelation time longer for bistatic clutter. The texture of both bistatic and monostatic clutter had similar autocorrelation functions and had similar decorrelation times. By comparing the texture and intensity autocorrelation functions it was concluded that the compound model still holds. It was also found that bistatic clutter was less ‘spiky’ than monostatic clutter particularly at horizontal polarisation. This was due to the reduction in the intensity of the spikes due to specular reflections. By combing the effects of the reduction in reflectivity and spikiness it was shown that a bistatic radar would require a smaller signal to interference ratio than a monostatic radar for the same probability of detection and probability of false alarm. This was more evident at angles close to 90° and for horizontal polarisation. In summary this thesis reports the collection and analysis of novel simultaneous monostatic and bistatic sea clutter and target data. This was achieved by the development of a unique multistatic radar system. This work has resulted in significant advances in both netted radar technology and understanding of bistatic sea clutter

    The application of digital techniques to an automatic radar track extraction system

    Get PDF
    'Modern' radar systems have come in for much criticism in recent years, particularly in the aftermath of the Falklands campaign. There have also been notable failures in commercial designs, including the well-publicised 'Nimrod' project which was abandoned due to persistent inability to meet signal processing requirements. There is clearly a need for improvement in radar signal processing techniques as many designs rely on technology dating from the late 1970's, much of which is obsolete by today’s standards. The Durham Radar Automatic Track Extraction System (RATES) is a practical implementation of current microprocessor technology, applied to plot extraction of surveillance radar data. In addition to suggestions for the design of such a system, results are quoted for the predicted performance when compared with a similar product using 1970's design methodology. Suggestions are given for the use of other VLSI techniques in plot extraction, including logic arrays and digital signal processors. In conclusion, there is an illustrated discussion concerning the use of systolic arrays in RATES and a prediction that this will represent the optimum architecture for future high-speed radar signal processors

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: ‱ Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments‱ Measurements, characterization, and modelling of radio channels beyond 4G networks‱ Key issues in Vehicle (V2X) communication‱ Wireless Body Area Networks, including specific Radio Channel Models for WBANs‱ Energy efficiency and resource management enhancements in Radio Access Networks‱ Definitions and models for the virtualised and cloud RAN architectures‱ Advances on feasible indoor localization and tracking techniques‱ Recent findings and innovations in antenna systems for communications‱ Physical Layer Network Coding for next generation wireless systems‱ Methods and techniques for MIMO Over the Air (OTA) testin

    Combined optimisation of waveform and quantisation thresholds for multistatic radar systems

    No full text
    The problem of designing waveform and quantisation thresholds is studied in a multistatic radar setting, where distributed receivers are connected to a fusion centre via capacity constraints. Different from the previous cloud radio-multistatic radar system which utilises an additive quantisation Gaussian noise model, a real quantisation system is designed. The authors first optimise the waveform without quantisation. Then they compress the received signal at receivers into a scalar without any performance degradation. Furthermore, the scalar quantiser is adopted and quantisation thresholds are designed. Numerical simulations are performed and the effectiveness of combined waveform and thresholds optimisation strategy is demonstrated

    Combined optimisation of waveform and quantisation thresholds for multistatic radar systems

    No full text
    The problem of designing waveform and quantisation thresholds is studied in a multistatic radar setting, where distributed receivers are connected to a fusion centre via capacity constraints. Different from the previous cloud radio-multistatic radar system which utilises an additive quantisation Gaussian noise model, a real quantisation system is designed. The authors first optimise the waveform without quantisation. Then they compress the received signal at receivers into a scalar without any performance degradation. Furthermore, the scalar quantiser is adopted and quantisation thresholds are designed. Numerical simulations are performed and the effectiveness of combined waveform and thresholds optimisation strategy is demonstrated.</p
    corecore