1,107 research outputs found

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Joint Scheduling and ARQ for MU-MIMO Downlink in the Presence of Inter-Cell Interference

    Full text link
    User scheduling and multiuser multi-antenna (MU-MIMO) transmission are at the core of high rate data-oriented downlink schemes of the next-generation of cellular systems (e.g., LTE-Advanced). Scheduling selects groups of users according to their channels vector directions and SINR levels. However, when scheduling is applied independently in each cell, the inter-cell interference (ICI) power at each user receiver is not known in advance since it changes at each new scheduling slot depending on the scheduling decisions of all interfering base stations. In order to cope with this uncertainty, we consider the joint operation of scheduling, MU-MIMO beamforming and Automatic Repeat reQuest (ARQ). We develop a game-theoretic framework for this problem and build on stochastic optimization techniques in order to find optimal scheduling and ARQ schemes. Particularizing our framework to the case of "outage service rates", we obtain a scheme based on adaptive variable-rate coding at the physical layer, combined with ARQ at the Logical Link Control (ARQ-LLC). Then, we present a novel scheme based on incremental redundancy Hybrid ARQ (HARQ) that is able to achieve a throughput performance arbitrarily close to the "genie-aided service rates", with no need for a genie that provides non-causally the ICI power levels. The novel HARQ scheme is both easier to implement and superior in performance with respect to the conventional combination of adaptive variable-rate coding and ARQ-LLC.Comment: Submitted to IEEE Transactions on Communications, v2: small correction

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Scheduler Algorithms for MU-MIMO

    Get PDF
    In multi-user multiple input multiple output (MU-MIMO), the complexity of the base-station scheduler has increased further compared to single-user multiple input multiple output (SU-MIMO). The scheduler must understand if several users can be spatially multiplexed in the same time-frequency resource. One way to spatially separate users is through beamforming with sufficiently many antennas. In this thesis work, two downlink beamforming algorithms for MU-MIMO are studied: The first algorithm implements precoding without considering inter-cell interference (ICI). The second one considers it and attempts to mitigate or null transmissions in the direction of user equipments (UEs) in other cells. The two algorithms are evaluated in SU-MIMO and MU-MIMO setups operating in time division duplex (TDD) mode and serving with single and dual-antenna terminals. Full-Buffer (FB) and file transfer protocol (FTP) data traffic profiles are studied. Additionally, various UE mobility patterns, UE transmit antenna topologies, sounding reference signal (SRS) periodicity configurations, and uniform linear array (ULA) topologies are considered. Simulations have been performed using a system level simulation framework developed by Ericsson AB. Another important part of this thesis work is the functional verification of this simulation framework, which at the time of writing is still undergoing development. Our simulation results show that in SU-MIMO, the second algorithm, which considers ICI, outperforms the first one for FB traffic profile and all UE speeds, but not for FTP traffic profile and medium (30 km/h) or high (60 km/h) UE speeds. In this case, the first algorithm, which does not consider ICI, can be used with advantage. In MU-MIMO, cell downlink throughput gains are observed for the second algorithm over the first one for low and medium system loads (number of users). For both algorithms, the cell throughput is observed to decrease with increasing UE speed and sounding periodicity.Scheduling in modern wireless standards, e.g., 3G, 4G and future 5G, can be defined as the task of allocating time and frequency resources by the base station (BS) to each user equipment (UE) that wants to engage in communication. Resources are allocated every transmission time interval (TTI), which is typically one millisecond. There exist both uplink (from the UEs to the BS) and downlink (from the BS to the UEs) resource schedulers implemented in the e-Node B, i.e., the base station (BS) in Long Term Evolution (LTE). The aim of this thesis work is to study how various communication techniques proposed for 5G can increase the overall system throughput of the downlink (DL) when a realistic resource scheduler is used. In particular, we consider: (i) Beamforming, (ii) Multi-user multiple input multiple output (MU-MIMO), and (iii) Inter-cell interference (ICI) mitigation. Beamforming can be achieved by deploying a large number of antenna elements at the BS with the aim of increasing the signal to interference noise ratio (SINR) towards the UE. Contrary to single-user multiple input multiple output (SU-MIMO), in MU-MIMO more than one UE are scheduled for transmissions in the same time-frequency resource; this is possible by judiciously pairing various UEs which are spatially sufficiently separated (according to some metric that we will define later). ICI mitigation can be achieved by means of proper precoding at BS where the precoder attempts to mitigate the interfering signal from BS towards UEs belonging to neighboring cells. In this thesis work, we investigate the performance of two scheduler algorithms for MU-MIMO, using SU-MIMO as baseline. The first algorithm does not consider ICI while the second one does. Dual layer beamforming (that is, two independent data streams are transmitted to each UE) and time division duplex (TDD) are assumed. In TDD mode the BS acquires the channel information from sounding reference signals (SRS) transmitted in the uplink (UL) and, by virtue of channel reciprocity, reuses the so-obtained channel information in the downlink. The performance evaluation of the two algorithms is based on the following parameters: UE Traffic profile, UE speed, SRS UL antenna configuration, SRS parameters, and BS antenna topology. - UE speed includes 3,30, and 60 km/h. - UE traffic profile includes full-buffer (FB) and file transfer protocol (FTP). With FB traffic profile, UEs send/receive data to/from the BS all the time, while this is not the case in the FTP traffic profile case. Some examples of FTP traffic profiles may include chatty, video, VoIP, web, etc. - SRS UL antenna configuration includes: (i) Two SRS, in which each UE sends two SRS to the BS from two antennas, (ii) one SRS with antenna selection, in which each UE alternately sends one SRS to the BS from each of two antennas, and (iii) one SRS without antenna selection, in which each UE sends one SRS to the BS from only one antenna. For two SRS UE case (note that in the downlink two layers, and hence two UE antennas, are always used). - SRS parameters include SRS bandwidth and SRS periodicity. In this thesis work, full-bandwidth SRS (20 MHz) with various SRS periodicities such as 5 ms, 10 ms, 20 ms are considered. - BS antenna topology includes 8 and 64 antenna elements at the BS. The main result of this thesis work is that in both SU-MIMO and MU-MIMO with FB traffic profile, it is better to use the second algorithm which considers ICI rather than the first one which does not. However, with FTP traffic profile, this is not always the case

    IST-2000-30148 I-METRA: D3.1 Design, analysis and selection of suitable algorithms

    Get PDF
    This deliverable contains a description of the space-time coding algorithms to be simulated within the I-METRA project. Different families of algorithms have been selected and described in this document with the objective of evaluating their performance. One of the main objectives of the I-METRA project is to impact into the current standardisation efforts related to the introduction of Multiple Input Multiple Output (MIMO) configurations into the High Speed Downlink and Uplink Packet Access concepts of UMTS (HSDPA and HSUPA). This required a review of the current specifications for these systems and the analysis of the impact of the potential incorporation of the selected MIMO schemes.Preprin

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética
    corecore