1,840 research outputs found

    Dense Associative Memory is Robust to Adversarial Inputs

    Full text link
    Deep neural networks (DNN) trained in a supervised way suffer from two known problems. First, the minima of the objective function used in learning correspond to data points (also known as rubbish examples or fooling images) that lack semantic similarity with the training data. Second, a clean input can be changed by a small, and often imperceptible for human vision, perturbation, so that the resulting deformed input is misclassified by the network. These findings emphasize the differences between the ways DNN and humans classify patterns, and raise a question of designing learning algorithms that more accurately mimic human perception compared to the existing methods. Our paper examines these questions within the framework of Dense Associative Memory (DAM) models. These models are defined by the energy function, with higher order (higher than quadratic) interactions between the neurons. We show that in the limit when the power of the interaction vertex in the energy function is sufficiently large, these models have the following three properties. First, the minima of the objective function are free from rubbish images, so that each minimum is a semantically meaningful pattern. Second, artificial patterns poised precisely at the decision boundary look ambiguous to human subjects and share aspects of both classes that are separated by that decision boundary. Third, adversarial images constructed by models with small power of the interaction vertex, which are equivalent to DNN with rectified linear units (ReLU), fail to transfer to and fool the models with higher order interactions. This opens up a possibility to use higher order models for detecting and stopping malicious adversarial attacks. The presented results suggest that DAM with higher order energy functions are closer to human visual perception than DNN with ReLUs

    Image to Image Translation for Domain Adaptation

    Full text link
    We propose a general framework for unsupervised domain adaptation, which allows deep neural networks trained on a source domain to be tested on a different target domain without requiring any training annotations in the target domain. This is achieved by adding extra networks and losses that help regularize the features extracted by the backbone encoder network. To this end we propose the novel use of the recently proposed unpaired image-toimage translation framework to constrain the features extracted by the encoder network. Specifically, we require that the features extracted are able to reconstruct the images in both domains. In addition we require that the distribution of features extracted from images in the two domains are indistinguishable. Many recent works can be seen as specific cases of our general framework. We apply our method for domain adaptation between MNIST, USPS, and SVHN datasets, and Amazon, Webcam and DSLR Office datasets in classification tasks, and also between GTA5 and Cityscapes datasets for a segmentation task. We demonstrate state of the art performance on each of these datasets

    A survey of handwritten character recognition with MNIST and EMNIST

    Get PDF
    This article belongs to the Special Issue Computer Vision and Pattern Recognition in the Era of Deep Learning.This paper summarizes the top state-of-the-art contributions reported on the MNIST dataset for handwritten digit recognition. This dataset has been extensively used to validate novel techniques in computer vision, and in recent years, many authors have explored the performance of convolutional neural networks (CNNs) and other deep learning techniques over this dataset. To the best of our knowledge, this paper is the first exhaustive and updated review of this dataset; there are some online rankings, but they are outdated, and most published papers survey only closely related works, omitting most of the literature. This paper makes a distinction between those works using some kind of data augmentation and works using the original dataset out-of-the-box. Also, works using CNNs are reported separately; as they are becoming the state-of-the-art approach for solving this problem. Nowadays, a significant amount of works have attained a test error rate smaller than 1% on this dataset; which is becoming non-challenging. By mid-2017, a new dataset was introduced: EMNIST, which involves both digits and letters, with a larger amount of data acquired from a database different than MNIST's. In this paper, EMNIST is explained and some results are surveyed
    • …
    corecore