3 research outputs found

    Combined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets

    Get PDF
    The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict binding affinity of ligands in the CSAR-NRC datasets. One, reported here for the first time, employs multiple chemical-geometrical descriptors of the protein-ligand interface to develop Quantitative Structure – Binding Affinity Relationships (QSBAR) models; these models are then used to predict binding affinity of ligands in the external dataset. Second is a physical force field-based scoring function, MedusaScore. We show that both individual scoring functions achieve statistically significant prediction accuracies with the squared correlation coefficient (R2) between actual and predicted binding affinity of 0.44/0.53 (Set1/Set2) with QSBAR models and 0.34/0.47 (Set1/Set2) with MedusaScore. Importantly, we find that the combination of QSBAR models and MedusaScore into consensus scoring function affords higher prediction accuracy than any of the contributing methods achieving R2 of 0.45/0.58 (Set1/Set2). Furthermore, we identify several chemical features and non-covalent interactions that may be responsible for the inaccurate prediction of binding affinity for several ligands by the scoring functions employed in this study

    IMPROVING RATIONAL DRUG DESIGN BY INCORPORATING NOVEL BIOPHYSICAL INSIGHT

    Get PDF
    Computer-aided drug design is a valuable and effective complement to conventional experimental drug discovery methods. In this thesis, we will discuss our contributions to advancing a number of outstanding challenges in computational drug discovery: understanding protein flexibility and dynamics, the role of water in small molecule binding and using and understanding large amounts of data. First, we describe the molecular steps involved in the induced-fit binding mechanism of p53 and MDM2. We use molecular dynamics simulations to understand the key chemistry responsible for the dynamic transition between the apo and holo structures of MDM2. This chemistry involves not only the indole side chain of the anchor residue of p53, Trp23, but surprisingly, the beta-carbon as well. We demonstrate that this chemistry plays a key role in opening the binding site by coordinating the position and orientation of MDM2 residues, Val93 and His96, through a previously undescribed transition state. We confirm these findings by observing that this chemistry is preserved in all available inhibitor-bound MDM2 co-crystal structures. Second, we discuss our advances in understanding water molecules in ligand binding sites by data mining the structural information of water molecules found in X-ray crystal structures. We examine a large set of paired bound and unbound proteins and compare the water molecules found in the binding site of the unbound structure to the functional groups on the ligand that displace them upon binding. We identify a number of generalized functional groups that are associated with characteristic clusters of water molecules. This information has been utilized in several successful and ongoing virtual screens. Third, we discuss software that we have developed that allows for very efficient exploration and selection of virtual screening results. Implemented as a PyMOL plugin, ClusterMols clusters compounds based on a user-defined level of chemical similarity. The software also provides advanced visualization tools and a number of controls for quickly navigating and selecting compounds of interest, as well as the ability to check online for available vendors. Finally, we present several published examples of modeling protein-lipid and protein-small molecules interactions for a number of important targets including ABL, c-Src and 5-LOX
    corecore