658 research outputs found

    Guaranteed bounds on the Kullback-Leibler divergence of univariate mixtures using piecewise log-sum-exp inequalities

    Full text link
    Information-theoretic measures such as the entropy, cross-entropy and the Kullback-Leibler divergence between two mixture models is a core primitive in many signal processing tasks. Since the Kullback-Leibler divergence of mixtures provably does not admit a closed-form formula, it is in practice either estimated using costly Monte-Carlo stochastic integration, approximated, or bounded using various techniques. We present a fast and generic method that builds algorithmically closed-form lower and upper bounds on the entropy, the cross-entropy and the Kullback-Leibler divergence of mixtures. We illustrate the versatile method by reporting on our experiments for approximating the Kullback-Leibler divergence between univariate exponential mixtures, Gaussian mixtures, Rayleigh mixtures, and Gamma mixtures.Comment: 20 pages, 3 figure

    Closed-Form Bayesian Inferences for the Logit Model via Polynomial Expansions

    Full text link
    Articles in Marketing and choice literatures have demonstrated the need for incorporating person-level heterogeneity into behavioral models (e.g., logit models for multiple binary outcomes as studied here). However, the logit likelihood extended with a population distribution of heterogeneity doesn't yield closed-form inferences, and therefore numerical integration techniques are relied upon (e.g., MCMC methods). We present here an alternative, closed-form Bayesian inferences for the logit model, which we obtain by approximating the logit likelihood via a polynomial expansion, and then positing a distribution of heterogeneity from a flexible family that is now conjugate and integrable. For problems where the response coefficients are independent, choosing the Gamma distribution leads to rapidly convergent closed-form expansions; if there are correlations among the coefficients one can still obtain rapidly convergent closed-form expansions by positing a distribution of heterogeneity from a Multivariate Gamma distribution. The solution then comes from the moment generating function of the Multivariate Gamma distribution or in general from the multivariate heterogeneity distribution assumed. Closed-form Bayesian inferences, derivatives (useful for elasticity calculations), population distribution parameter estimates (useful for summarization) and starting values (useful for complicated algorithms) are hence directly available. Two simulation studies demonstrate the efficacy of our approach.Comment: 30 pages, 2 figures, corrected some typos. Appears in Quantitative Marketing and Economics vol 4 (2006), no. 2, 173--20

    Nonparametric Hierarchical Clustering of Functional Data

    Full text link
    In this paper, we deal with the problem of curves clustering. We propose a nonparametric method which partitions the curves into clusters and discretizes the dimensions of the curve points into intervals. The cross-product of these partitions forms a data-grid which is obtained using a Bayesian model selection approach while making no assumptions regarding the curves. Finally, a post-processing technique, aiming at reducing the number of clusters in order to improve the interpretability of the clustering, is proposed. It consists in optimally merging the clusters step by step, which corresponds to an agglomerative hierarchical classification whose dissimilarity measure is the variation of the criterion. Interestingly this measure is none other than the sum of the Kullback-Leibler divergences between clusters distributions before and after the merges. The practical interest of the approach for functional data exploratory analysis is presented and compared with an alternative approach on an artificial and a real world data set

    Distributionally robust optimization through the lens of submodularity

    Full text link
    Distributionally robust optimization is used to solve decision making problems under adversarial uncertainty where the distribution of the uncertainty is itself ambiguous. In this paper, we identify a class of these instances that is solvable in polynomial time by viewing it through the lens of submodularity. We show that the sharpest upper bound on the expectation of the maximum of affine functions of a random vector is computable in polynomial time if each random variable is discrete with finite support and upper bounds (respectively lower bounds) on the expected values of a finite set of submodular (respectively supermodular) functions of the random vector are specified. This adds to known polynomial time solvable instances of the multimarginal optimal transport problem and the generalized moment problem by bridging ideas from convexity in continuous optimization to submodularity in discrete optimization. In turn, we show that a class of distributionally robust optimization problems with discrete random variables is solvable in polynomial time using the ellipsoid method. When the submodular (respectively supermodular) functions are structured, the sharp bound is computable by solving a compact linear program. We illustrate this in two cases. The first is a multimarginal optimal transport problem with given univariate marginal distributions and bivariate marginals satisfying specific positive dependence orders along with an extension to incorporate higher order marginal information. The second is a discrete moment problem where a set of marginal moments of the random variables are given along with lower bounds on the cross moments of pairs of random variables. Numerical experiments show that the bounds improve by 2 to 8 percent over bounds that use only univariate information in the first case, and by 8 to 15 percent over bounds that use the first moment in the second case.Comment: 36 Pages, 6 Figure
    corecore