1,233 research outputs found

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201

    Improved Lower Bounds for Constant GC-Content DNA Codes

    Full text link
    The design of large libraries of oligonucleotides having constant GC-content and satisfying Hamming distance constraints between oligonucleotides and their Watson-Crick complements is important in reducing hybridization errors in DNA computing, DNA microarray technologies, and molecular bar coding. Various techniques have been studied for the construction of such oligonucleotide libraries, ranging from algorithmic constructions via stochastic local search to theoretical constructions via coding theory. We introduce a new stochastic local search method which yields improvements up to more than one third of the benchmark lower bounds of Gaborit and King (2005) for n-mer oligonucleotide libraries when n <= 14. We also found several optimal libraries by computing maximum cliques on certain graphs.Comment: 4 page

    Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis

    Full text link
    Database theory and database practice are typically the domain of computer scientists who adopt what may be termed an algorithmic perspective on their data. This perspective is very different than the more statistical perspective adopted by statisticians, scientific computers, machine learners, and other who work on what may be broadly termed statistical data analysis. In this article, I will address fundamental aspects of this algorithmic-statistical disconnect, with an eye to bridging the gap between these two very different approaches. A concept that lies at the heart of this disconnect is that of statistical regularization, a notion that has to do with how robust is the output of an algorithm to the noise properties of the input data. Although it is nearly completely absent from computer science, which historically has taken the input data as given and modeled algorithms discretely, regularization in one form or another is central to nearly every application domain that applies algorithms to noisy data. By using several case studies, I will illustrate, both theoretically and empirically, the nonobvious fact that approximate computation, in and of itself, can implicitly lead to statistical regularization. This and other recent work suggests that, by exploiting in a more principled way the statistical properties implicit in worst-case algorithms, one can in many cases satisfy the bicriteria of having algorithms that are scalable to very large-scale databases and that also have good inferential or predictive properties.Comment: To appear in the Proceedings of the 2012 ACM Symposium on Principles of Database Systems (PODS 2012

    Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays

    Get PDF
    Microarrays (DNA, protein, etc.) are massively parallel affinity-based biosensors capable of detecting and quantifying a large number of different genomic particles simultaneously. Among them, DNA microarrays comprising tens of thousands of probe spots are currently being employed to test multitude of targets in a single experiment. In conventional microarrays, each spot contains a large number of copies of a single probe designed to capture a single target, and, hence, collects only a single data point. This is a wasteful use of the sensing resources in comparative DNA microarray experiments, where a test sample is measured relative to a reference sample. Typically, only a fraction of the total number of genes represented by the two samples is differentially expressed, and, thus, a vast number of probe spots may not provide any useful information. To this end, we propose an alternative design, the so-called compressed microarrays, wherein each spot contains copies of several different probes and the total number of spots is potentially much smaller than the number of targets being tested. Fewer spots directly translates to significantly lower costs due to cheaper array manufacturing, simpler image acquisition and processing, and smaller amount of genomic material needed for experiments. To recover signals from compressed microarray measurements, we leverage ideas from compressive sampling. For sparse measurement matrices, we propose an algorithm that has significantly lower computational complexity than the widely used linear-programming-based methods, and can also recover signals with less sparsity

    Inference of sparse combinatorial-control networks from gene-expression data: a message passing approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptional gene regulation is one of the most important mechanisms in controlling many essential cellular processes, including cell development, cell-cycle control, and the cellular response to variations in environmental conditions. Genes are regulated by transcription factors and other genes/proteins via a complex interconnection network. Such regulatory links may be predicted using microarray expression data, but most regulation models suppose transcription factor independence, which leads to spurious links when many genes have highly correlated expression levels.</p> <p>Results</p> <p>We propose a new algorithm to infer combinatorial control networks from gene-expression data. Based on a simple model of combinatorial gene regulation, it includes a message-passing approach which avoids explicit sampling over putative gene-regulatory networks. This algorithm is shown to recover the structure of a simple artificial cell-cycle network model for baker's yeast. It is then applied to a large-scale yeast gene expression dataset in order to identify combinatorial regulations, and to a data set of direct medical interest, namely the Pleiotropic Drug Resistance (PDR) network.</p> <p>Conclusions</p> <p>The algorithm we designed is able to recover biologically meaningful interactions, as shown by recent experimental results <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Moreover, new cases of combinatorial control are predicted, showing how simple models taking this phenomenon into account can lead to informative predictions and allow to extract more putative regulatory interactions from microarray databases.</p

    Stable Feature Selection for Biomarker Discovery

    Full text link
    Feature selection techniques have been used as the workhorse in biomarker discovery applications for a long time. Surprisingly, the stability of feature selection with respect to sampling variations has long been under-considered. It is only until recently that this issue has received more and more attention. In this article, we review existing stable feature selection methods for biomarker discovery using a generic hierarchal framework. We have two objectives: (1) providing an overview on this new yet fast growing topic for a convenient reference; (2) categorizing existing methods under an expandable framework for future research and development
    corecore