54 research outputs found

    Power Modeling and Optimization for GPGPUs

    Get PDF
    Modern graphics processing units (GPUs) supports tens of thousands of parallel threads and delivers remarkably high computing throughput. General-Purpose computing on GPUs (GPGPUs) is becoming the attractive platform for general-purpose applications that request high computational performance such as scientific computing, financial applications, medical data processing, and so on. However, GPGPUs is facing severe power challenge due to the increasing number of cores placed on a single chip with decreasing feature size. In order to explore the power optimization techniques in GPGPUs, I first build a power model for GPGPUs, which is able to estimate both dynamic and leakage power of major microarchitecture structures in GPGPUs. I then target on the power-hungry structures (e.g. register file) to explore the energy-efficient GPGPUs. In order to hide the long latency operations, GPGPUs employs the fine-grained multi-threading among numerous active threads, leading to the sizeable register files with massive power consumption. The conventional method to reduce dynamic power consumption is the supply voltage scaling. And the inter-bank tunneling FETs (TFETs) is the promising candidate compared to CMOS for low voltage operations regarding to both leakage and performance. However, always executing at the low voltage will result in significant performance degradation. In this study, I propose the hybrid CMOS-TFET based register file and allocate TFET-based registers to threads whose execution progress can be delayed to some degree to avoid the memory contentions with other threads to reduce both dynamic and leakage power, and the CMOS-based registers are still used for threads requiring normal execution speed. My experimental results show that the proposed technique achieves 30% energy (including both dynamic and leakage) reduction in register files with negligible performance degradation compared to the baseline case equipped with naive power optimization technique

    Fault Modeling of Graphene Nanoribbon FET Logic Circuits

    Full text link
    [EN] Due to the increasing defect rates in highly scaled complementary metal-oxide-semiconductor (CMOS) devices, and the emergence of alternative nanotechnology devices, reliability challenges are of growing importance. Understanding and controlling the fault mechanisms associated with new materials and structures for both transistors and interconnection is a key issue in novel nanodevices. The graphene nanoribbon field-effect transistor (GNR FET) has revealed itself as a promising technology to design emerging research logic circuits, because of its outstanding potential speed and power properties. This work presents a study of fault causes, mechanisms, and models at the device level, as well as their impact on logic circuits based on GNR FETs. From a literature review of fault causes and mechanisms, fault propagation was analyzed, and fault models were derived for device and logic circuit levels. This study may be helpful for the prevention of faults in the design process of graphene nanodevices. In addition, it can help in the design and evaluation of defect- and fault-tolerant nanoarchitectures based on graphene circuits. Results are compared with other emerging devices, such as carbon nanotube (CNT) FET and nanowire (NW) FET.This work was supported in part by the Spanish Government under the research project TIN2016-81075-R and by Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), under the project 200190032.Gil Tomás, DA.; Gracia-Morán, J.; Saiz-Adalid, L.; Gil, P. (2019). Fault Modeling of Graphene Nanoribbon FET Logic Circuits. Electronics. 8(8):1-18. https://doi.org/10.3390/electronics8080851S11888International Technology Roadmap for Semiconductors (ITRS) 2013http://www.itrs2.net/2013-itrs.htmlSchuegraf, K., Abraham, M. C., Brand, A., Naik, M., & Thakur, R. (2013). Semiconductor Logic Technology Innovation to Achieve Sub-10 nm Manufacturing. IEEE Journal of the Electron Devices Society, 1(3), 66-75. doi:10.1109/jeds.2013.2271582International Technology Roadmap for Semiconductors (ITRS) 2015https://bit.ly/2xiiT8PNovoselov, K. S. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. doi:10.1126/science.1102896Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849Wu, Y., Farmer, D. B., Xia, F., & Avouris, P. (2013). Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 101(7), 1620-1637. doi:10.1109/jproc.2013.2260311Choudhury, M. R., Youngki Yoon, Jing Guo, & Mohanram, K. (2011). Graphene Nanoribbon FETs: Technology Exploration for Performance and Reliability. IEEE Transactions on Nanotechnology, 10(4), 727-736. doi:10.1109/tnano.2010.2073718Avouris, P. (2010). Graphene: Electronic and Photonic Properties and Devices. Nano Letters, 10(11), 4285-4294. doi:10.1021/nl102824hBanadaki, Y. M., & Srivastava, A. (2015). Scaling Effects on Static Metrics and Switching Attributes of Graphene Nanoribbon FET for Emerging Technology. IEEE Transactions on Emerging Topics in Computing, 3(4), 458-469. doi:10.1109/tetc.2015.2445104Avouris, P., Chen, Z., & Perebeinos, V. (2007). Carbon-based electronics. Nature Nanotechnology, 2(10), 605-615. doi:10.1038/nnano.2007.300Banerjee, S. K., Register, L. F., Tutuc, E., Basu, D., Kim, S., Reddy, D., & MacDonald, A. H. (2010). Graphene for CMOS and Beyond CMOS Applications. Proceedings of the IEEE, 98(12), 2032-2046. doi:10.1109/jproc.2010.2064151Schwierz, F. (2013). Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 101(7), 1567-1584. doi:10.1109/jproc.2013.2257633Fregonese, S., Magallo, M., Maneux, C., Happy, H., & Zimmer, T. (2013). Scalable Electrical Compact Modeling for Graphene FET Transistors. IEEE Transactions on Nanotechnology, 12(4), 539-546. doi:10.1109/tnano.2013.2257832Chen, Y.-Y., Sangai, A., Rogachev, A., Gholipour, M., Iannaccone, G., Fiori, G., & Chen, D. (2015). A SPICE-Compatible Model of MOS-Type Graphene Nano-Ribbon Field-Effect Transistors Enabling Gate- and Circuit-Level Delay and Power Analysis Under Process Variation. IEEE Transactions on Nanotechnology, 14(6), 1068-1082. doi:10.1109/tnano.2015.2469647Ferrari, A. C., Bonaccorso, F., Fal’ko, V., Novoselov, K. S., Roche, S., Bøggild, P., … Pugno, N. (2015). Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7(11), 4598-4810. doi:10.1039/c4nr01600aHong, A. J., Song, E. B., Yu, H. S., Allen, M. J., Kim, J., Fowler, J. D., … Wang, K. L. (2011). Graphene Flash Memory. ACS Nano, 5(10), 7812-7817. doi:10.1021/nn201809kJeng, S.-L., Lu, J.-C., & Wang, K. (2007). A Review of Reliability Research on Nanotechnology. IEEE Transactions on Reliability, 56(3), 401-410. doi:10.1109/tr.2007.903188Srinivasu, B., & Sridharan, K. (2017). A Transistor-Level Probabilistic Approach for Reliability Analysis of Arithmetic Circuits With Applications to Emerging Technologies. IEEE Transactions on Reliability, 66(2), 440-457. doi:10.1109/tr.2016.2642168Teixeira Franco, D., Naviner, J.-F., & Naviner, L. (2006). Yield and reliability issues in nanoelectronic technologies. annals of telecommunications - annales des télécommunications, 61(11-12), 1422-1457. doi:10.1007/bf03219903Lin, Y.-M., Jenkins, K. A., Valdes-Garcia, A., Small, J. P., Farmer, D. B., & Avouris, P. (2009). Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters, 9(1), 422-426. doi:10.1021/nl803316hLiao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., … Duan, X. (2010). High-speed graphene transistors with a self-aligned nanowire gate. Nature, 467(7313), 305-308. doi:10.1038/nature09405Wang, X., Tabakman, S. M., & Dai, H. (2008). Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. Journal of the American Chemical Society, 130(26), 8152-8153. doi:10.1021/ja8023059Geim, A. K. (2009). Graphene: Status and Prospects. Science, 324(5934), 1530-1534. doi:10.1126/science.1158877Mistewicz, K., Nowak, M., Wrzalik, R., Śleziona, J., Wieczorek, J., & Guiseppi-Elie, A. (2016). Ultrasonic processing of SbSI nanowires for their application to gas sensors. Ultrasonics, 69, 67-73. doi:10.1016/j.ultras.2016.04.004Jesionek, M., Nowak, M., Mistewicz, K., Kępińska, M., Stróż, D., Bednarczyk, I., & Paszkiewicz, R. (2018). Sonochemical growth of nanomaterials in carbon nanotube. Ultrasonics, 83, 179-187. doi:10.1016/j.ultras.2017.03.014Chen, X., Seo, D. H., Seo, S., Chung, H., & Wong, H.-S. P. (2012). Graphene Interconnect Lifetime: A Reliability Analysis. IEEE Electron Device Letters, 33(11), 1604-1606. doi:10.1109/led.2012.2211564Wang, Z. F., Zheng, H., Shi, Q. W., & Chen, J. (2009). Emerging nanodevice paradigm. ACM Journal on Emerging Technologies in Computing Systems, 5(1), 1-19. doi:10.1145/1482613.1482616Dong, J., Xiang, G., Xiang-Yang, K., & Jia-Ming, L. (2007). Atomistic Failure Mechanism of Single Wall Carbon Nanotubes with Small Diameters. Chinese Physics Letters, 24(1), 165-168. doi:10.1088/0256-307x/24/1/045Bu, H., Chen, Y., Zou, M., Yi, H., Bi, K., & Ni, Z. (2009). Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A, 373(37), 3359-3362. doi:10.1016/j.physleta.2009.07.04

    Multiple-valued logic: technology and circuit implementation

    Get PDF
    Title from PDF of title page, viewed March 1, 2023Dissertation advisors: Masud H. Chowdhury and Yugyung LeeVitaIncludes bibliographical references (pages 91-107)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 2021Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore's law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. During this project, different technologies for Multiple-Valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies and (ii) availability of effective synthesis techniques. The main part of this project can be divided into two categories: (i) proposing different novel and efficient design for various logic and arithmetic circuits such as inverter, NAND, NOR, adder, multiplexer etc. (ii) proposing different fast and efficient design for various sequential and memory circuits. For the operation of the device, two of the very promising emerging technologies are used: Graphene Nanoribbon Field Effect Transistor (GNRFET) and Carbon Nano Tube Field Effect Transistor (CNTFET). A comparative analysis of the proposed designs and several state-of-the-art designs are also given in all the cases in terms of delay, total power, and power-delay-product (PDP). The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website and CNTFET model available from Standford University website.Introduction -- Fundamentals and scope of multiple valued logic -- Technological aspect of multiple valued logic circuit -- Ternary logic gates using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary arithmetic circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary sequential circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary memory circuits using Carbon Nano Tube Field Effect Transistor (CNTFET) -- Conclusions & future wor

    Double-gate single electron transistor : modeling, design & evaluation of logic architectures

    Get PDF
    Dans les années à venir, l'industrie de la microélectronique doit développer de nouvelles filières technologiques qui pourront devenir des successeurs ou des compléments de la technologie CMOS ultime. Parmi ces technologies émergentes relevant du domaine « Beyond CMOS », ce travail de recherche porte sur les transistors mono-électroniques (SET) dont le fonctionnement est basé sur la quantification de la charge électrique, le transport quantique et la répulsion Coulombienne. Les SETs doivent être étudiés à trois niveaux : composants, circuits et système. Ces nouveaux composants, utilisent à leur profit le phénomène dit de blocage de Coulomb permettant le transit des électrons de manière séquentielle, afin de contrôler très précisément le courant véhiculé. En effet, l'émergence du caractère granulaire de la charge électrique dans le transport des électrons par effet tunnel, permet d'envisager la réalisation de remplaçants potentiels des transistors ou de cellules mémoire à haute densité d'intégration, basse consommation. L'objectif principal de ce travail de thèse est d'explorer et d'évaluer le potentiel des transistors mono-électroniques double-grille métalliques (DG-SETs) pour les circuits logiques numériques. De ce fait, les travaux de recherches proposés sont divisés en trois parties : i) le développement des outils de simulation et tout particulièrement un modèle analytique de DG-SET ; ii) la conception de circuits numériques à base de DG-SETs dans une approche « cellules standards » ; et iii) l'exploration d'architectures logiques versatiles à base de DG-SETs en exploitant la double-grille du dispositif. Un modèle analytique pour les DG-SETs métalliques fonctionnant à température ambiante et au-delà est présenté. Ce modèle est basé sur des paramètres physiques et géométriques et implémenté en langage Verilog-A. Il est utilisable pour la conception de circuits analogiques ou numériques hybrides SET-CMOS. A l'aide de cet outil, nous avons conçu, simulé et évalué les performances de circuits logiques à base de DG-SETs afin de mettre en avant leur utilisation dans les futurs circuits ULSI. Une bibliothèque de cellules logiques, à base de DG-SETs, fonctionnant à haute température est présentée. Des résultats remarquables ont été atteints notamment en termes de consommation d'énergie. De plus, des architectures logiques telles que les blocs élémentaires pour le calcul (ALU, SRAM, etc.) ont été conçues entièrement à base de DG-SETs. La flexibilité offerte par la seconde grille du DG-SET a permis de concevoir une nouvelle famille de circuits logiques flexibles à base de portes de transmission. Une réduction du nombre de transistors par fonction et de consommation a été atteinte. Enfin, des analyses Monte-Carlo sont abordées afin de déterminer la robustesse des circuits logiques conçus à l'égard des dispersions technologiques

    Function Implementation in a Multi-Gate Junctionless FET Structure

    Get PDF
    Title from PDF of title page, viewed September 18, 2023Dissertation advisor: Mostafizur RahmanVitaIncludes bibliographical references (pages 95-117)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering, Department of Physics and Astronomy. University of Missouri--Kansas City, 2023This dissertation explores designing and implementing a multi-gate junctionless field-effect transistor (JLFET) structure and its potential applications beyond conventional devices. The JLFET is a promising alternative to conventional transistors due to its simplified fabrication process and improved electrical characteristics. However, previous research has focused primarily on the device's performance at the individual transistor level, neglecting its potential for implementing complex functions. This dissertation fills this research gap by investigating the function implementation capabilities of the JLFET structure and proposing novel circuit designs based on this technology. The first part of this dissertation presents a comprehensive review of the existing literature on JLFETs, including their fabrication techniques, operating principles, and performance metrics. It highlights the advantages of JLFETs over traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) and discusses the challenges associated with their implementation. Additionally, the review explores the limitations of conventional transistor technologies, emphasizing the need for exploring alternative device architectures. Building upon the theoretical foundation, the dissertation presents a detailed analysis of the multi-gate JLFET structure and its potential for realizing advanced functions. The study explores the impact of different design parameters, such as channel length, gate oxide thickness, and doping profiles, on the device performance. It investigates the trade-offs between power consumption, speed, and noise immunity, and proposes design guidelines for optimizing the function implementation capabilities of the JLFET. To demonstrate the practical applicability of the JLFET structure, this dissertation introduces several novel circuit designs based on this technology. These designs leverage the unique characteristics of the JLFET, such as its steep subthreshold slope and improved on/off current ratio, to implement complex functions efficiently. The proposed circuits include arithmetic units, memory cells, and digital logic gates. Detailed simulations and analyses are conducted to evaluate their performance, power consumption, and scalability. Furthermore, this dissertation explores the potential of the JLFET structure for emerging technologies, such as neuromorphic computing and bioelectronics. It investigates how the JLFET can be employed to realize energy-efficient and biocompatible devices for applications in artificial intelligence and biomedical engineering. The study investigates the compatibility of the JLFET with various materials and substrates, as well as its integration with other functional components. In conclusion, this dissertation contributes to the field of nanoelectronics by providing a comprehensive investigation into the function implementation capabilities of the multi-gate JLFET structure. It highlights the potential of this device beyond its individual transistor performance and proposes novel circuit designs based on this technology. The findings of this research pave the way for the development of advanced electronic systems that are more energy-efficient, faster, and compatible with emerging applications in diverse fields.Introduction -- Literature review -- Crosstalk principle -- Experiment of crosstalk -- Device architecture -- Simulation & results -- Conclusio

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Digital Circuit Design Using Floating Gate Transistors

    Get PDF
    Floating gate (flash) transistors are used exclusively for memory applications today. These applications include SD cards of various form factors, USB flash drives and SSDs. In this thesis, we explore the use of flash transistors to implement digital logic circuits. Since the threshold voltage of flash transistors can be modified at a fine granularity during programming, several advantages are obtained by our flash-based digital circuit design approach. For one, speed binning at the factory can be controlled with precision. Secondly, an IC can be re-programmed in the field, to negate effects such as aging, which has been a significant problem in recent times, particularly for mission-critical applications. Thirdly, unlike a regular MOSFET, which has one threshold voltage level, a flash transistor can have multiple threshold voltage levels. The benefit of having multiple threshold voltage levels in a flash transistor is that it allows the ability to encode more symbols in each device, unlike a regular MOSFET. This allows us to implement multi-valued logic functions natively. In this thesis, we evaluate different flash-based digital circuit design approaches and compare their performance with a traditional CMOS standard cell-based design approach. We begin by evaluating our design approach at the cell level to optimize the design’s delay, power energy and physical area characteristics. The flash-based approach is demonstrated to be better than the CMOS standard cell approach, for these performance metrics. Afterwards, we present the performance of our design approach at the block level. We describe a synthesis flow to decompose a circuit block into a network of interconnected flash-based circuit cells. We also describe techniques to optimize the resulting network of flash-based circuit cells using don’t cares. Our optimization approach distinguishes itself from other optimization techniques that use don’t cares, since it a) targets a flash-based design flow, b) optimizes clusters of logic nodes at once instead of one node at a time, c) attempts to reduce the number of cubes instead of reducing the number of literals in each cube and d) performs optimization on the post-technology mapped netlist which results in a direct improvement in result quality, as compared to pre-technology mapping logic optimization that is typically done in the literature. The resulting network characteristics (delay, power, energy and physical area) are presented. These results are compared with a standard cell-based realization of the same block (obtained using commercial tools) and we demonstrate significant improvements in all the design metrics. We also study flash-based FPGA designs (both static and dynamic), and present the tradeoff of delay, power dissipation and energy consumption of the various designs. Our work differs from previously proposed flash-based FPGAs, since we embed the flash transistors (which store the configuration bits) directly within the logic and interconnect fabrics. We also present a detailed description of how the programming of the configuration bits is accomplished, for all the proposed designs

    Digital Circuit Design Using Floating Gate Transistors

    Get PDF
    Floating gate (flash) transistors are used exclusively for memory applications today. These applications include SD cards of various form factors, USB flash drives and SSDs. In this thesis, we explore the use of flash transistors to implement digital logic circuits. Since the threshold voltage of flash transistors can be modified at a fine granularity during programming, several advantages are obtained by our flash-based digital circuit design approach. For one, speed binning at the factory can be controlled with precision. Secondly, an IC can be re-programmed in the field, to negate effects such as aging, which has been a significant problem in recent times, particularly for mission-critical applications. Thirdly, unlike a regular MOSFET, which has one threshold voltage level, a flash transistor can have multiple threshold voltage levels. The benefit of having multiple threshold voltage levels in a flash transistor is that it allows the ability to encode more symbols in each device, unlike a regular MOSFET. This allows us to implement multi-valued logic functions natively. In this thesis, we evaluate different flash-based digital circuit design approaches and compare their performance with a traditional CMOS standard cell-based design approach. We begin by evaluating our design approach at the cell level to optimize the design’s delay, power energy and physical area characteristics. The flash-based approach is demonstrated to be better than the CMOS standard cell approach, for these performance metrics. Afterwards, we present the performance of our design approach at the block level. We describe a synthesis flow to decompose a circuit block into a network of interconnected flash-based circuit cells. We also describe techniques to optimize the resulting network of flash-based circuit cells using don’t cares. Our optimization approach distinguishes itself from other optimization techniques that use don’t cares, since it a) targets a flash-based design flow, b) optimizes clusters of logic nodes at once instead of one node at a time, c) attempts to reduce the number of cubes instead of reducing the number of literals in each cube and d) performs optimization on the post-technology mapped netlist which results in a direct improvement in result quality, as compared to pre-technology mapping logic optimization that is typically done in the literature. The resulting network characteristics (delay, power, energy and physical area) are presented. These results are compared with a standard cell-based realization of the same block (obtained using commercial tools) and we demonstrate significant improvements in all the design metrics. We also study flash-based FPGA designs (both static and dynamic), and present the tradeoff of delay, power dissipation and energy consumption of the various designs. Our work differs from previously proposed flash-based FPGAs, since we embed the flash transistors (which store the configuration bits) directly within the logic and interconnect fabrics. We also present a detailed description of how the programming of the configuration bits is accomplished, for all the proposed designs

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design

    Multiple-Independent-Gate Field-Effect Transistors for High Computational Density and Low Power Consumption

    Get PDF
    Transistors are the fundamental elements in Integrated Circuits (IC). The development of transistors significantly improves the circuit performance. Numerous technology innovations have been adopted to maintain the continuous scaling down of transistors. With all these innovations and efforts, the transistor size is approaching the natural limitations of materials in the near future. The circuits are expected to compute in a more efficient way. From this perspective, new device concepts are desirable to exploit additional functionality. On the other hand, with the continuously increased device density on the chips, reducing the power consumption has become a key concern in IC design. To overcome the limitations of Complementary Metal-Oxide-Semiconductor (CMOS) technology in computing efficiency and power reduction, this thesis introduces the multiple- independent-gate Field-Effect Transistors (FETs) with silicon nanowires and FinFET structures. The device not only has the capability of polarity control, but also provides dual-threshold- voltage and steep-subthreshold-slope operations for power reduction in circuit design. By independently modulating the Schottky junctions between metallic source/drain and semiconductor channel, the dual-threshold-voltage characteristics with controllable polarity are achieved in a single device. This property is demonstrated in both experiments and simulations. Thanks to the compact implementation of logic functions, circuit-level benchmarking shows promising performance with a configurable dual-threshold-voltage physical design, which is suitable for low-power applications. This thesis also experimentally demonstrates the steep-subthreshold-slope operation in the multiple-independent-gate FETs. Based on a positive feedback induced by weak impact ionization, the measured characteristics of the device achieve a steep subthreshold slope of 6 mV/dec over 5 decades of current. High Ion/Ioff ratio and low leakage current are also simultaneously obtained with a good reliability. Based on a physical analysis of the device operation, feasible improvements are suggested to further enhance the performance. A physics-based surface potential and drain current model is also derived for the polarity-controllable Silicon Nanowire FETs (SiNWFETs). By solving the carrier transport at Schottky junctions and in the channel, the core model captures the operation with independent gate control. It can serve as the core framework for developing a complete compact model by integrating advanced physical effects. To summarize, multiple-independent-gate SiNWFETs and FinFETs are extensively studied in terms of fabrication, modeling, and simulation. The proposed device concept expands the family of polarity-controllable FETs. In addition to the enhanced logic functionality, the polarity-controllable SiNWFETs and FinFETs with the dual-threshold-voltage and steep-subthreshold-slope operation can be promising candidates for future IC design towards low-power applications
    • …
    corecore