1,028 research outputs found

    Recognizing Degraded Handwritten Characters

    Get PDF
    In this paper, Slavonic manuscripts from the 11th century written in Glagolitic script are investigated. State-of-the-art optical character recognition methods produce poor results for degraded handwritten document images. This is largely due to a lack of suitable results from basic pre-processing steps such as binarization and image segmentation. Therefore, a new, binarization-free approach will be presented that is independent of pre-processing deficiencies. It additionally incorporates local information in order to recognize also fragmented or faded characters. The proposed algorithm consists of two steps: character classification and character localization. Firstly scale invariant feature transform features are extracted and classified using support vector machines. On this basis interest points are clustered according to their spatial information. Then, characters are localized and eventually recognized by a weighted voting scheme of pre-classified local descriptors. Preliminary results show that the proposed system can handle highly degraded manuscript images with background noise, e.g. stains, tears, and faded characters

    Colour Text Segmentation in Web Images Based on Human Perception

    No full text
    There is a significant need to extract and analyse the text in images on Web documents, for effective indexing, semantic analysis and even presentation by non-visual means (e.g., audio). This paper argues that the challenging segmentation stage for such images benefits from a human perspective of colour perception in preference to RGB colour space analysis. The proposed approach enables the segmentation of text in complex situations such as in the presence of varying colour and texture (characters and background). More precisely, characters are segmented as distinct regions with separate chromaticity and/or lightness by performing a layer decomposition of the image. The method described here is a result of the authors’ systematic approach to approximate the human colour perception characteristics for the identification of character regions. In this instance, the image is decomposed by performing histogram analysis of Hue and Lightness in the HLS colour space and merging using information on human discrimination of wavelength and luminance

    Efficient and effective OCR engine training

    Get PDF
    We present an efficient and effective approach to train OCR engines using the Aletheia document analysis system. All components required for training are seamlessly integrated into Aletheia: training data preparation, the OCR engine’s training processes themselves, text recognition, and quantitative evaluation of the trained engine. Such a comprehensive training and evaluation system, guided through a GUI, allows for iterative incremental training to achieve best results. The widely used Tesseract OCR engine is used as a case study to demonstrate the efficiency and effectiveness of the proposed approach. Experimental results are presented validating the training approach with two different historical datasets, representative of recent significant digitisation projects. The impact of different training strategies and training data requirements is presented in detail

    A Fuzzy Approach to Text Segmentation in Web Images Based on Human Colour Perception

    No full text
    This chapter describes a new approach for the segmentation of text in images on Web pages. In the same spirit as the authors’ previous work on this subject, this approach attempts to model the ability of humans to differentiate between colours. In this case, pixels of similar colour are first grouped using a colour distance defined in a perceptually uniform colour space (as opposed to the commonly used RGB). The resulting colour connected components are then grouped to form larger (character-like) regions with the aid of a propinquity measure, which is the output of a fuzzy inference system. This measure expresses the likelihood for merging two components based on two features. The first feature is the colour distance between the components, in the L*a*b* colour space. The second feature expresses the topological relationship of two components. The results of the method indicate a better performance than previous methods devised by the authors and possibly better (a direct comparison is not really possible due to the differences in application domain characteristics between this and previous methods) performance to other existing methods

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    Optimization of Image Processing Algorithms for Character Recognition in Cultural Typewritten Documents

    Full text link
    Linked Data is used in various fields as a new way of structuring and connecting data. Cultural heritage institutions have been using linked data to improve archival descriptions and facilitate the discovery of information. Most archival records have digital representations of physical artifacts in the form of scanned images that are non-machine-readable. Optical Character Recognition (OCR) recognizes text in images and translates it into machine-encoded text. This paper evaluates the impact of image processing methods and parameter tuning in OCR applied to typewritten cultural heritage documents. The approach uses a multi-objective problem formulation to minimize Levenshtein edit distance and maximize the number of words correctly identified with a non-dominated sorting genetic algorithm (NSGA-II) to tune the methods' parameters. Evaluation results show that parameterization by digital representation typology benefits the performance of image pre-processing algorithms in OCR. Furthermore, our findings suggest that employing image pre-processing algorithms in OCR might be more suitable for typologies where the text recognition task without pre-processing does not produce good results. In particular, Adaptive Thresholding, Bilateral Filter, and Opening are the best-performing algorithms for the theatre plays' covers, letters, and overall dataset, respectively, and should be applied before OCR to improve its performance.Comment: 25 pages, 4 figure
    • 

    corecore