134 research outputs found

    Attacking the combination generator

    Get PDF
    We present one of the most efficient attacks against the combination generator. This attack is inherent to this system as its only assumption is that the filtering function has a good autocorrelation. This is usually the case if the system is designed to be resistant to other kinds of attacks. We use only classical tools, namely vectorial correlation, weight 4 multiples and Walsh transform

    Hurst's Rescaled Range Statistical Analysis for Pseudorandom Number Generators used in Physical Simulations

    Full text link
    The rescaled range statistical analysis (R/S) is proposed as a new method to detect correlations in pseudorandom number generators used in Monte Carlo simulations. In an extensive test it is demonstrated that the RS analysis provides a very sensitive method to reveal hidden long run and short run correlations. Several widely used and also some recently proposed pseudorandom number generators are subjected to this test. In many generators correlations are detected and quantified.Comment: 12 pages, 12 figures, 6 tables. Replaces previous version to correct citation [19

    Portable random number generators

    Get PDF
    Computers are deterministic devices, and a computer-generated random number is a contradiction in terms. As a result, computer-generated pseudorandom numbers are fraught with peril for the unwary. We summarize much that is known about the most well-known pseudorandom number generators: congruential generators. We also provide machine-independent programs to implement the generators in any language that has 32-bit signed integers-for example C, C++, and FORTRAN. Based on an extensive search, we provide parameter values better than those previously available.Programming (Mathematics) ; Computers

    A Simple Computational Model for Acceptance/Rejection of Binary Sequence Generators

    Full text link
    A simple binary model to compute the degree of balancedness in the output sequence of LFSR-combinational generators has been developed. The computational method is based exclusively on the handling of binary strings by means of logic operations. The proposed model can serve as a deterministic alternative to existing probabilistic methods for checking balancedness in binary sequence generators. The procedure here described can be devised as a first selective criterium for acceptance/rejection of this type of generators.Comment: 16 pages, 0 figure

    Physical tests for Random Numbers in Simulations

    Full text link
    We propose three physical tests to measure correlations in random numbers used in Monte Carlo simulations. The first test uses autocorrelation times of certain physical quantities when the Ising model is simulated with the Wolff algorithm. The second test is based on random walks, and the third on blocks of n successive numbers. We apply the tests to show that recent errors in high precision simulations using generalized feedback shift register algorithms are due to short range correlations in random number sequences. We also determine the length of these correlations.Comment: 16 pages, Post Script file, HU-TFT-94-
    • 

    corecore