3,120 research outputs found

    Fault detection, identification and accommodation techniques for unmanned airborne vehicles

    Get PDF
    Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures. This paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health). The major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault. The paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures

    CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning

    Full text link
    We present a new technique to enhance the robustness of imitation learning methods by generating corrective data to account for compounding errors and disturbances. While existing methods rely on interactive expert labeling, additional offline datasets, or domain-specific invariances, our approach requires minimal additional assumptions beyond access to expert data. The key insight is to leverage local continuity in the environment dynamics to generate corrective labels. Our method first constructs a dynamics model from the expert demonstration, encouraging local Lipschitz continuity in the learned model. In locally continuous regions, this model allows us to generate corrective labels within the neighborhood of the demonstrations but beyond the actual set of states and actions in the dataset. Training on this augmented data enhances the agent's ability to recover from perturbations and deal with compounding errors. We demonstrate the effectiveness of our generated labels through experiments in a variety of robotics domains in simulation that have distinct forms of continuity and discontinuity, including classic control problems, drone flying, navigation with high-dimensional sensor observations, legged locomotion, and tabletop manipulation

    NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis

    Full text link
    Expert demonstrations are a rich source of supervision for training visual robotic manipulation policies, but imitation learning methods often require either a large number of demonstrations or expensive online expert supervision to learn reactive closed-loop behaviors. In this work, we introduce SPARTN (Synthetic Perturbations for Augmenting Robot Trajectories via NeRF): a fully-offline data augmentation scheme for improving robot policies that use eye-in-hand cameras. Our approach leverages neural radiance fields (NeRFs) to synthetically inject corrective noise into visual demonstrations, using NeRFs to generate perturbed viewpoints while simultaneously calculating the corrective actions. This requires no additional expert supervision or environment interaction, and distills the geometric information in NeRFs into a real-time reactive RGB-only policy. In a simulated 6-DoF visual grasping benchmark, SPARTN improves success rates by 2.8×\times over imitation learning without the corrective augmentations and even outperforms some methods that use online supervision. It additionally closes the gap between RGB-only and RGB-D success rates, eliminating the previous need for depth sensors. In real-world 6-DoF robotic grasping experiments from limited human demonstrations, our method improves absolute success rates by 22.5%22.5\% on average, including objects that are traditionally challenging for depth-based methods. See video results at \url{https://bland.website/spartn}

    How to Fine-tune the Model: Unified Model Shift and Model Bias Policy Optimization

    Full text link
    Designing and deriving effective model-based reinforcement learning (MBRL) algorithms with a performance improvement guarantee is challenging, mainly attributed to the high coupling between model learning and policy optimization. Many prior methods that rely on return discrepancy to guide model learning ignore the impacts of model shift, which can lead to performance deterioration due to excessive model updates. Other methods use performance difference bound to explicitly consider model shift. However, these methods rely on a fixed threshold to constrain model shift, resulting in a heavy dependence on the threshold and a lack of adaptability during the training process. In this paper, we theoretically derive an optimization objective that can unify model shift and model bias and then formulate a fine-tuning process. This process adaptively adjusts the model updates to get a performance improvement guarantee while avoiding model overfitting. Based on these, we develop a straightforward algorithm USB-PO (Unified model Shift and model Bias Policy Optimization). Empirical results show that USB-PO achieves state-of-the-art performance on several challenging benchmark tasks
    • …
    corecore