51,627 research outputs found

    Joint Active Learning with Feature Selection via CUR Matrix Decomposition

    Full text link
    This paper presents an unsupervised learning approach for simultaneous sample and feature selection, which is in contrast to existing works which mainly tackle these two problems separately. In fact the two tasks are often interleaved with each other: noisy and high-dimensional features will bring adverse effect on sample selection, while informative or representative samples will be beneficial to feature selection. Specifically, we propose a framework to jointly conduct active learning and feature selection based on the CUR matrix decomposition. From the data reconstruction perspective, both the selected samples and features can best approximate the original dataset respectively, such that the selected samples characterized by the features are highly representative. In particular, our method runs in one-shot without the procedure of iterative sample selection for progressive labeling. Thus, our model is especially suitable when there are few labeled samples or even in the absence of supervision, which is a particular challenge for existing methods. As the joint learning problem is NP-hard, the proposed formulation involves a convex but non-smooth optimization problem. We solve it efficiently by an iterative algorithm, and prove its global convergence. Experimental results on publicly available datasets corroborate the efficacy of our method compared with the state-of-the-art.Comment: Accepted by T-PAM

    Learning From Less Data: A Unified Data Subset Selection and Active Learning Framework for Computer Vision

    Full text link
    Supervised machine learning based state-of-the-art computer vision techniques are in general data hungry. Their data curation poses the challenges of expensive human labeling, inadequate computing resources and larger experiment turn around times. Training data subset selection and active learning techniques have been proposed as possible solutions to these challenges. A special class of subset selection functions naturally model notions of diversity, coverage and representation and can be used to eliminate redundancy thus lending themselves well for training data subset selection. They can also help improve the efficiency of active learning in further reducing human labeling efforts by selecting a subset of the examples obtained using the conventional uncertainty sampling based techniques. In this work, we empirically demonstrate the effectiveness of two diversity models, namely the Facility-Location and Dispersion models for training-data subset selection and reducing labeling effort. We demonstrate this across the board for a variety of computer vision tasks including Gender Recognition, Face Recognition, Scene Recognition, Object Detection and Object Recognition. Our results show that diversity based subset selection done in the right way can increase the accuracy by upto 5 - 10% over existing baselines, particularly in settings in which less training data is available. This allows the training of complex machine learning models like Convolutional Neural Networks with much less training data and labeling costs while incurring minimal performance loss.Comment: Accepted to WACV 2019. arXiv admin note: substantial text overlap with arXiv:1805.1119

    Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to Computer Vision

    Full text link
    The goal of data selection is to capture the most structural information from a set of data. This paper presents a fast and accurate data selection method, in which the selected samples are optimized to span the subspace of all data. We propose a new selection algorithm, referred to as iterative projection and matching (IPM), with linear complexity w.r.t. the number of data, and without any parameter to be tuned. In our algorithm, at each iteration, the maximum information from the structure of the data is captured by one selected sample, and the captured information is neglected in the next iterations by projection on the null-space of previously selected samples. The computational efficiency and the selection accuracy of our proposed algorithm outperform those of the conventional methods. Furthermore, the superiority of the proposed algorithm is shown on active learning for video action recognition dataset on UCF-101; learning using representatives on ImageNet; training a generative adversarial network (GAN) to generate multi-view images from a single-view input on CMU Multi-PIE dataset; and video summarization on UTE Egocentric dataset.Comment: 11 pages, 5 figures, 5 table

    A Survey on Multi-Task Learning

    Full text link
    Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL. First, we classify different MTL algorithms into several categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach, and decomposition approach, and then discuss the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, batch MTL models are difficult to handle this situation and online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing are reviewed to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works. Finally, we present theoretical analyses and discuss several future directions for MTL

    Active Learning Methods based on Statistical Leverage Scores

    Full text link
    In many real-world machine learning applications, unlabeled data are abundant whereas class labels are expensive and scarce. An active learner aims to obtain a model of high accuracy with as few labeled instances as possible by effectively selecting useful examples for labeling. We propose a new selection criterion that is based on statistical leverage scores and present two novel active learning methods based on this criterion: ALEVS for querying single example at each iteration and DBALEVS for querying a batch of examples. To assess the representativeness of the examples in the pool, ALEVS and DBALEVS use the statistical leverage scores of the kernel matrices computed on the examples of each class. Additionally, DBALEVS selects a diverse a set of examples that are highly representative but are dissimilar to already labeled examples through maximizing a submodular set function defined with the statistical leverage scores and the kernel matrix computed on the pool of the examples. The submodularity property of the set scoring function let us identify batches with a constant factor approximate to the optimal batch in an efficient manner. Our experiments on diverse datasets show that querying based on leverage scores is a powerful strategy for active learning.Comment: Submitted to Machine Learning Journal, EMLP 2019 journal trac

    Dynamic Neural Network Channel Execution for Efficient Training

    Full text link
    Existing methods for reducing the computational burden of neural networks at run-time, such as parameter pruning or dynamic computational path selection, focus solely on improving computational efficiency during inference. On the other hand, in this work, we propose a novel method which reduces the memory footprint and number of computing operations required for training and inference. Our framework efficiently integrates pruning as part of the training procedure by exploring and tracking the relative importance of convolutional channels. At each training step, we select only a subset of highly salient channels to execute according to the combinatorial upper confidence bound algorithm, and run a forward and backward pass only on these activated channels, hence learning their parameters. Consequently, we enable the efficient discovery of compact models. We validate our approach empirically on state-of-the-art CNNs - VGGNet, ResNet and DenseNet, and on several image classification datasets. Results demonstrate our framework for dynamic channel execution reduces computational cost up to 4x and parameter count up to 9x, thus reducing the memory and computational demands for discovering and training compact neural network models

    Continuous Adaptation of Multi-Camera Person Identification Models through Sparse Non-redundant Representative Selection

    Full text link
    The problem of image-base person identification/recognition is to provide an identity to the image of an individual based on learned models that describe his/her appearance. Most traditional person identification systems rely on learning a static model on tediously labeled training data. Though labeling manually is an indispensable part of a supervised framework, for a large scale identification system labeling huge amount of data is a significant overhead. For large multi-sensor data as typically encountered in camera networks, labeling a lot of samples does not always mean more information, as redundant images are labeled several times. In this work, we propose a convex optimization based iterative framework that progressively and judiciously chooses a sparse but informative set of samples for labeling, with minimal overlap with previously labeled images. We also use a structure preserving sparse reconstruction based classifier to reduce the training burden typically seen in discriminative classifiers. The two stage approach leads to a novel framework for online update of the classifiers involving only the incorporation of new labeled data rather than any expensive training phase. We demonstrate the effectiveness of our approach on multi-camera person re-identification datasets, to demonstrate the feasibility of learning online classification models in multi-camera big data applications. Using three benchmark datasets, we validate our approach and demonstrate that our framework achieves superior performance with significantly less amount of manual labeling

    Nonnegative Restricted Boltzmann Machines for Parts-based Representations Discovery and Predictive Model Stabilization

    Full text link
    The success of any machine learning system depends critically on effective representations of data. In many cases, it is desirable that a representation scheme uncovers the parts-based, additive nature of the data. Of current representation learning schemes, restricted Boltzmann machines (RBMs) have proved to be highly effective in unsupervised settings. However, when it comes to parts-based discovery, RBMs do not usually produce satisfactory results. We enhance such capacity of RBMs by introducing nonnegativity into the model weights, resulting in a variant called nonnegative restricted Boltzmann machine (NRBM). The NRBM produces not only controllable decomposition of data into interpretable parts but also offers a way to estimate the intrinsic nonlinear dimensionality of data, and helps to stabilize linear predictive models. We demonstrate the capacity of our model on applications such as handwritten digit recognition, face recognition, document classification and patient readmission prognosis. The decomposition quality on images is comparable with or better than what produced by the nonnegative matrix factorization (NMF), and the thematic features uncovered from text are qualitatively interpretable in a similar manner to that of the latent Dirichlet allocation (LDA). The stability performance of feature selection on medical data is better than RBM and competitive with NMF. The learned features, when used for classification, are more discriminative than those discovered by both NMF and LDA and comparable with those by RBM

    Are all training examples equally valuable?

    Full text link
    When learning a new concept, not all training examples may prove equally useful for training: some may have higher or lower training value than others. The goal of this paper is to bring to the attention of the vision community the following considerations: (1) some examples are better than others for training detectors or classifiers, and (2) in the presence of better examples, some examples may negatively impact performance and removing them may be beneficial. In this paper, we propose an approach for measuring the training value of an example, and use it for ranking and greedily sorting examples. We test our methods on different vision tasks, models, datasets and classifiers. Our experiments show that the performance of current state-of-the-art detectors and classifiers can be improved when training on a subset, rather than the whole training set

    Semidefinite Programming Based Preconditioning for More Robust Near-Separable Nonnegative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) under the separability assumption can provably be solved efficiently, even in the presence of noise, and has been shown to be a powerful technique in document classification and hyperspectral unmixing. This problem is referred to as near-separable NMF and requires that there exists a cone spanned by a small subset of the columns of the input nonnegative matrix approximately containing all columns. In this paper, we propose a preconditioning based on semidefinite programming making the input matrix well-conditioned. This in turn can improve significantly the performance of near-separable NMF algorithms which is illustrated on the popular successive projection algorithm (SPA). The new preconditioned SPA is provably more robust to noise, and outperforms SPA on several synthetic data sets. We also show how an active-set method allow us to apply the preconditioning on large-scale real-world hyperspectral images.Comment: 25 pages, 6 figures, 4 tables. New numerical experiments, additional remarks and comment
    • …
    corecore