5,251 research outputs found

    Groupwise Multimodal Image Registration using Joint Total Variation

    Get PDF
    In medical imaging it is common practice to acquire a wide range of modalities (MRI, CT, PET, etc.), to highlight different structures or pathologies. As patient movement between scans or scanning session is unavoidable, registration is often an essential step before any subsequent image analysis. In this paper, we introduce a cost function based on joint total variation for such multimodal image registration. This cost function has the advantage of enabling principled, groupwise alignment of multiple images, whilst being insensitive to strong intensity non-uniformities. We evaluate our algorithm on rigidly aligning both simulated and real 3D brain scans. This validation shows robustness to strong intensity non-uniformities and low registration errors for CT/PET to MRI alignment. Our implementation is publicly available at https://github.com/brudfors/coregistration-njtv

    An algebraic method for solving the SU(3) Gauss law

    Get PDF
    A generalisation of existing SU(2) results is obtained. In particular, the source-free Gauss law for SU(3)-valued gauge fields is solved using a non-Abelian analogue of the Poincare lemma. When sources are present, the colour-electric field is divided into two parts in a way similar to the Hodge decomposition. Singularities due to coinciding eigenvalues of the colour-magnetic field are also analysed.Comment: 20 pages, LaTeX2e; references added, other changes minor; to appear in J. Math. Phy

    Quantum splines

    Get PDF
    A quantum spline is a smooth curve parameterised by time in the space of unitary transformations, whose associated orbit on the space of pure states traverses a designated set of quantum states at designated times, such that the trace norm of the time rate of change of the associated Hamiltonian is minimised. The solution to the quantum spline problem is obtained, and is applied in an example that illustrates quantum control of coherent states. An e cient numerical scheme for computing quantum splines is discussed and implemented in the examples

    Classical light analogue of the nonlocal Aharonov-Bohm effect

    Full text link
    We demonstrate the existence of a non-local geometric phase in the intensity-intensity correlations of classical incoherent light, that is not seen in the lower order correlations. This two-photon Pancharatnam phase was observed and modulated in a Mach-Zehnder interferometer. Using acousto-optic interaction, independent phase noise was introduced to light in the two arms of the interferometer to create two independent incoherent classical sources from laser light. The experiment is the classical optical analogue of the multi-particle Aharonov-Bohm effect. As the trajectory of light over the Poincare sphere introduces a phase shift observable only in the intensity-intensity correlation, it provides a means of deflecting the two-photon wavefront, while having no effect on single photons.Comment: To appear in Europhys. Let

    Geometric Aspects of Composite Pulses

    Full text link
    Unitary operations acting on a quantum system must be robust against systematic errors in control parameters for reliable quantum computing. Composite pulse technique in nuclear magnetic resonance (NMR) realises such a robust operation by employing a sequence of possibly poor quality pulses. In this article, we demonstrate that two kinds of composite pulses, one compensates for a pulse length error in a one-qubit system and the other compensates for a J-coupling error in a twoqubit system, have vanishing dynamical phase and thereby can be seen as geometric quantum gates, which implement unitary gates by the holonomy associated with dynamics of cyclic vectors defined in the text.Comment: 20 pages, 4 figures. Accepted for publication in Philosophical Transactions of the Royal Society
    corecore