1,066 research outputs found

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Machine Learning Approaches for Semantic Segmentation on Partly-Annotated Medical Images

    Get PDF
    Semantic segmentation of medical images plays a crucial role in assisting medical practitioners in providing accurate and swift diagnoses; nevertheless, deep neural networks require extensive labelled data to learn and generalise appropriately. This is a major issue in medical imagery because most of the datasets are not fully annotated. Training models with partly-annotated datasets generate plenty of predictions that belong to correct unannotated areas that are categorised as false positives; as a result, standard segmentation metrics and objective functions do not work correctly, affecting the overall performance of the models. In this thesis, the semantic segmentation of partly-annotated medical datasets is extensively and thoroughly studied. The general objective is to improve the segmentation results of medical images via innovative supervised and semi-supervised approaches. The main contributions of this work are the following. Firstly, a new metric, specifically designed for this kind of dataset, can provide a reliable score to partly-annotated datasets with positive expert feedback in their generated predictions by exploiting all the confusion matrix values except the false positives. Secondly, an innovative approach to generating better pseudo-labels when applying co-training with the disagreement selection strategy. This method expands the pixels in disagreement utilising the combined predictions as a guide. Thirdly, original attention mechanisms based on disagreement are designed for two cases: intra-model and inter-model. These attention modules leverage the disagreement between layers (from the same or different model instances) to enhance the overall learning process and generalisation of the models. Lastly, innovative deep supervision methods improve the segmentation results by training neural networks one subnetwork at a time following the order of the supervision branches. The methods are thoroughly evaluated on several histopathological datasets showing significant improvements

    Optical remote sensing of water quality parameters retrieval in the Barents Sea

    Get PDF
    This thesis addresses various aspects of monitoring water quality indicators (WQIs) using optical remote sensing technologies. The dynamic nature of aquatic systems necessitate frequent monitoring at high spatial resolution. Machine learning (ML)-based algorithms are becoming increasingly common for these applications. ML algorithms are required to be trained by a significant amount of training data, and their accuracy depends on the performance of the atmospheric correction (AC) algorithm being used for correcting atmospheric effects. AC over open oceanic waters generally performs reasonably well; however, limitations still exist over inland and coastal waters. AC becomes more challenging in the high north waters, such as the Barents Sea, due to the unique in-water optical properties at high latitudes, long ray pathways, as well as the scattering of light from neighboring sea ice into the sensors’ field of view adjacent to ice-infested waters. To address these challenges, we evaluated the performances of state-of-the-art AC algorithms applied to the high-resolution satellite sensors Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI), both for high-north (Paper II) and for global inland and coastal waters (Paper III). Using atmospherically corrected remote sensing reflectance (Rrs ) products, estimated after applying the top performing AC algorithm, we present a new bandpass adjustment (BA) method for spectral harmonization of Rrs products from OLI and MSI. This harmonization will enable an increased number of ocean color (OC) observations and, hence, a larger amount of training data. The BA model is based on neural networks (NNs), which perform a pixel-by-pixel transformation of MSI-derived Rrs to that of OLI equivalent for their common bands. In addition, to accurately retrieve concentrations of Chlorophyll-a (Chl-a) and Color Dissolved Organic Matter (CDOM) from remotely sensed data, we propose in the thesis (Paper 1) an NN-based WQI retrieval model dubbed Ocean Color Net (OCN). Our results indicate that Rrs retrieved via the Acolite Dark Spectrum Fitting (DSF) method is in best agreement with in-situ Rrs observations in the Barents Sea compared to the other methods. The median absolute percentage difference (MAPD) in the blue-green bands ranges from 9% to 25%. In the case of inland and coastal waters (globally), we found that OC-SMART is the top performer, with MAPD Rrs products for varying optical regimes than previously presented methods. Additionally, to improve the analysis of remote sensing spectral data, we introduce a new spatial window-based match-up data set creation method which increases the training data set and allows for better tuning of regression models. Based on comparisons with in-water measured Chl-a profiles in the Barents Sea, our analysis indicates that the MSI-derived Rrs products are more sensitive to the depth-integrated Chl-a contents than near-surface Chl-a values (Paper I). In the case of inland and coastal waters, our study shows that using combined OLI and BA MSI-derived Rrs match-ups results in considerable improvement in the retrieval of WQIs (Paper III). The obtained results for the datasets used in this thesis illustrates that the proposed OCN algorithm shows better performance in retrieving WQIs than other semi-empirical algorithms such as the band ratio-based algorithm, the ML-based Gaussian Process Regression (GPR), as well as the globally trained Case-2 Regional/Coast Colour (C2RCC) processing chain model C2RCC-networks, and OC-SMART. The work in this thesis contributes to ongoing research in developing new methods for merging data products from multiple OC missions for increased coverage and the number of optical observations. The developed algorithms are validated in various environmental and aquatic conditions and have the potential to contribute to accurate and consistent retrievals of in-water constituents from high-resolution satellite sensors

    Development and application of methodologies and infrastructures for cancer genome analysis within Personalized Medicine

    Full text link
    [eng] Next-generation sequencing (NGS) has revolutionized biomedical sciences, especially in the area of cancer. It has nourished genomic research with extensive collections of sequenced genomes that are investigated to untangle the molecular bases of disease, as well as to identify potential targets for the design of new treatments. To exploit all this information, several initiatives have emerged worldwide, among which the Pan-Cancer project of the ICGC (International Cancer Genome Consortium) stands out. This project has jointly analyzed thousands of tumor genomes of different cancer types in order to elucidate the molecular bases of the origin and progression of cancer. To accomplish this task, new emerging technologies, including virtualization systems such as virtual machines or software containers, were used and had to be adapted to various computing centers. The portability of this system to the supercomputing infrastructure of the BSC (Barcelona Supercomputing Center) has been carried out during the first phase of the thesis. In parallel, other projects promote the application of genomics discoveries into the clinics. This is the case of MedPerCan, a national initiative to design a pilot project for the implementation of personalized medicine in oncology in Catalonia. In this context, we have centered our efforts on the methodological side, focusing on the detection and characterization of somatic variants in tumors. This step is a challenging action, due to the heterogeneity of the different methods, and an essential part, as it lays at the basis of all downstream analyses. On top of the methodological section of the thesis, we got into the biological interpretation of the results to study the evolution of chronic lymphocytic leukemia (CLL) in a close collaboration with the group of Dr. Elías Campo from the Hospital Clínic/IDIBAPS. In the first study, we have focused on the Richter transformation (RT), a transformation of CLL into a high-grade lymphoma that leads to a very poor prognosis and with unmet clinical needs. We found that RT has greater genomic, epigenomic and transcriptomic complexity than CLL. Its genome may reflect the imprint of therapies that the patients received prior to RT, indicating the presence of cells exposed to these mutagenic treatments which later expand giving rise to the clinical manifestation of the disease. Multiple NGS- based techniques, including whole-genome sequencing and single-cell DNA and RNA sequencing, among others, confirmed the pre-existence of cells with the RT characteristics years before their manifestation, up to the time of CLL diagnosis. The transcriptomic profile of RT is remarkably different from that of CLL. Of particular importance is the overexpression of the OXPHOS pathway, which could be used as a therapeutic vulnerability. Finally, in a second study, the analysis of a case of CLL in a young adult, based on whole genome and single-cell sequencing at different times of the disease, revealed that the founder clone of CLL did not present any somatic driver mutations and was characterized by germline variants in ATM, suggesting its role in the origin of the disease, and highlighting the possible contribution of germline variants or other non-genetic mechanisms in the initiation of CLL

    Mass spectral imaging of clinical samples using deep learning

    Get PDF
    A better interpretation of tumour heterogeneity and variability is vital for the improvement of novel diagnostic techniques and personalized cancer treatments. Tumour tissue heterogeneity is characterized by biochemical heterogeneity, which can be investigated by unsupervised metabolomics. Mass Spectrometry Imaging (MSI) combined with Machine Learning techniques have generated increasing interest as analytical and diagnostic tools for the analysis of spatial molecular patterns in tissue samples. Considering the high complexity of data produced by the application of MSI, which can consist of many thousands of spectral peaks, statistical analysis and in particular machine learning and deep learning have been investigated as novel approaches to deduce the relationships between the measured molecular patterns and the local structural and biological properties of the tissues. Machine learning have historically been divided into two main categories: Supervised and Unsupervised learning. In MSI, supervised learning methods may be used to segment tissues into histologically relevant areas e.g. the classification of tissue regions in H&E (Haemotoxylin and Eosin) stained samples. Initial classification by an expert histopathologist, through visual inspection enables the development of univariate or multivariate models, based on tissue regions that have significantly up/down-regulated ions. However, complex data may result in underdetermined models, and alternative methods that can cope with high dimensionality and noisy data are required. Here, we describe, apply, and test a novel diagnostic procedure built using a combination of MSI and deep learning with the objective of delineating and identifying biochemical differences between cancerous and non-cancerous tissue in metastatic liver cancer and epithelial ovarian cancer. The workflow investigates the robustness of single (1D) to multidimensional (3D) tumour analyses and also highlights possible biomarkers which are not accessible from classical visual analysis of the H&E images. The identification of key molecular markers may provide a deeper understanding of tumour heterogeneity and potential targets for intervention.Open Acces

    Applications of Molecular Dynamics simulations for biomolecular systems and improvements to density-based clustering in the analysis

    Get PDF
    Molecular Dynamics simulations provide a powerful tool to study biomolecular systems with atomistic detail. The key to better understand the function and behaviour of these molecules can often be found in their structural variability. Simulations can help to expose this information that is otherwise experimentally hard or impossible to attain. This work covers two application examples for which a sampling and a characterisation of the conformational ensemble could reveal the structural basis to answer a topical research question. For the fungal toxin phalloidin—a small bicyclic peptide—observed product ratios in different cyclisation reactions could be rationalised by assessing the conformational pre-organisation of precursor fragments. For the C-type lectin receptor langerin, conformational changes induced by different side-chain protonations could deliver an explanation of the pH-dependency in the protein’s calcium-binding. The investigations were accompanied by the continued development of a density-based clustering protocol into a respective software package, which is generally well applicable for the use case of extracting conformational states from Molecular Dynamics data
    • …
    corecore