521 research outputs found

    Colorization of Natural Images via L1 Optimization

    Full text link
    Natural images in the colour space YUV have been observed to have a non-Gaussian, heavy tailed distribution (called 'sparse') when the filter G(U)(r) = U(r) - sum_{s \in N(r)} w{(Y)_{rs}} U(s), is applied to the chromacity channel U (and equivalently to V), where w is a weighting function constructed from the intensity component Y [1]. In this paper we develop Bayesian analysis of the colorization problem using the filter response as a regularization term to arrive at a non-convex optimization problem. This problem is convexified using L1 optimization which often gives the same results for sparse signals [2]. It is observed that L1 optimization, in many cases, over-performs the famous colorization algorithm by Levin et al [3].Comment: 5 pages, 3 figure

    Deep Video Color Propagation

    Full text link
    Traditional approaches for color propagation in videos rely on some form of matching between consecutive video frames. Using appearance descriptors, colors are then propagated both spatially and temporally. These methods, however, are computationally expensive and do not take advantage of semantic information of the scene. In this work we propose a deep learning framework for color propagation that combines a local strategy, to propagate colors frame-by-frame ensuring temporal stability, and a global strategy, using semantics for color propagation within a longer range. Our evaluation shows the superiority of our strategy over existing video and image color propagation methods as well as neural photo-realistic style transfer approaches.Comment: BMVC 201

    Estimation of Scribble Placement for Painting Colorization

    Get PDF
    Image colorization has been a topic of interest since the mid 70’s and several algorithms have been proposed that given a grayscale image and color scribbles (hints) produce a colorized image. Recently, this approach has been introduced in the field of art conservation and cultural heritage, where B&W photographs of paintings at previous stages have been colorized. However, the questions of what is the minimum number of scribbles necessary and where they should be placed in an image remain unexplored. Here we address this limitation using an iterative algorithm that provides insights as to the relationship between locally vs. globally important scribbles. Given a color image we randomly select scribbles and we attempt to color the grayscale version of the original.We define a scribble contribution measure based on the reconstruction error. We demonstrate our approach using a widely used colorization algorithm and images from a Picasso painting and the peppers test image. We show that areas isolated by thick brushstrokes or areas with high textural variation are locally important but contribute very little to the overall representation accuracy. We also find that for the case of Picasso on average 10% of scribble coverage is enough and that flat areas can be presented by few scribbles. The proposed method can be used verbatim to test any colorization algorithm

    It Takes (Only) Two: Adversarial Generator-Encoder Networks

    Full text link
    We present a new autoencoder-type architecture that is trainable in an unsupervised mode, sustains both generation and inference, and has the quality of conditional and unconditional samples boosted by adversarial learning. Unlike previous hybrids of autoencoders and adversarial networks, the adversarial game in our approach is set up directly between the encoder and the generator, and no external mappings are trained in the process of learning. The game objective compares the divergences of each of the real and the generated data distributions with the prior distribution in the latent space. We show that direct generator-vs-encoder game leads to a tight coupling of the two components, resulting in samples and reconstructions of a comparable quality to some recently-proposed more complex architectures

    PixColor: Pixel Recursive Colorization

    Full text link
    We propose a novel approach to automatically produce multiple colorized versions of a grayscale image. Our method results from the observation that the task of automated colorization is relatively easy given a low-resolution version of the color image. We first train a conditional PixelCNN to generate a low resolution color for a given grayscale image. Then, given the generated low-resolution color image and the original grayscale image as inputs, we train a second CNN to generate a high-resolution colorization of an image. We demonstrate that our approach produces more diverse and plausible colorizations than existing methods, as judged by human raters in a "Visual Turing Test"

    Discriminative Region Proposal Adversarial Networks for High-Quality Image-to-Image Translation

    Full text link
    Image-to-image translation has been made much progress with embracing Generative Adversarial Networks (GANs). However, it's still very challenging for translation tasks that require high quality, especially at high-resolution and photorealism. In this paper, we present Discriminative Region Proposal Adversarial Networks (DRPAN) for high-quality image-to-image translation. We decompose the procedure of image-to-image translation task into three iterated steps, first is to generate an image with global structure but some local artifacts (via GAN), second is using our DRPnet to propose the most fake region from the generated image, and third is to implement "image inpainting" on the most fake region for more realistic result through a reviser, so that the system (DRPAN) can be gradually optimized to synthesize images with more attention on the most artifact local part. Experiments on a variety of image-to-image translation tasks and datasets validate that our method outperforms state-of-the-arts for producing high-quality translation results in terms of both human perceptual studies and automatic quantitative measures.Comment: ECCV 201
    • …
    corecore