533,578 research outputs found
Mouse models of colorectal cancer.
Colorectal cancer is one of the most common malignancies in the world. Many mouse models have been developed to evaluate features of colorectal cancer in humans. These can be grouped into genetically-engineered, chemically-induced, and inoculated models. However, none recapitulates all of the characteristics of human colorectal cancer. It is critical to use a specific mouse model to address a particular research question. Here, we review commonly used mouse models for human colorectal cancer
BH3 mimetic ABT-737 sensitizes colorectal cancer cells to ixazomib through MCL-1 downregulation and autophagy inhibition.
The proteasome inhibitor MLN9708 is an orally administered drug that is hydrolyzed into its active form, MLN2238 (ixazomib). Compared with Bortezomib, MLN2238 has a shorter proteasome dissociation half-life and a lower incidence and severity of peripheral neuropathy, which makes it an attractive candidate for colorectal cancer treatment. In the present study, we observed that MLN2238 induced autophagy, as evidenced by conversion of the autophagosomal marker LC3 from LC3I to LC3II, in colorectal cancer cell lines. Mcl-1, an anti-apoptotic Bcl-2 family protein, was markedly elevated after treating a colorectal cancer cell line with MLN2238. We proved that inhibiting Mcl-1 expression enhances MLN2238 induced apoptosis and negatively regulates autophagy. Co-administration of BH3 mimetic ABT-737 with MLN2238 synergistically kills colorectal cancer cells through MCL-1 neutralization and autophagy inhibition. Furthermore, the synergistic killing effect of the combination therapy is correlated with P53 status in colorectal cancer. These data highlight that the combination of ABT-737 with MLN9708 is a promising therapeutic strategy for human colorectal cancer
Deep-Learning for Classification of Colorectal Polyps on Whole-Slide Images
Histopathological characterization of colorectal polyps is an important
principle for determining the risk of colorectal cancer and future rates of
surveillance for patients. This characterization is time-intensive, requires
years of specialized training, and suffers from significant inter-observer and
intra-observer variability. In this work, we built an automatic
image-understanding method that can accurately classify different types of
colorectal polyps in whole-slide histology images to help pathologists with
histopathological characterization and diagnosis of colorectal polyps. The
proposed image-understanding method is based on deep-learning techniques, which
rely on numerous levels of abstraction for data representation and have shown
state-of-the-art results for various image analysis tasks. Our
image-understanding method covers all five polyp types (hyperplastic polyp,
sessile serrated polyp, traditional serrated adenoma, tubular adenoma, and
tubulovillous/villous adenoma) that are included in the US multi-society task
force guidelines for colorectal cancer risk assessment and surveillance, and
encompasses the most common occurrences of colorectal polyps. Our evaluation on
239 independent test samples shows our proposed method can identify the types
of colorectal polyps in whole-slide images with a high efficacy (accuracy:
93.0%, precision: 89.7%, recall: 88.3%, F1 score: 88.8%). The presented method
in this paper can reduce the cognitive burden on pathologists and improve their
accuracy and efficiency in histopathological characterization of colorectal
polyps, and in subsequent risk assessment and follow-up recommendations
Matrix metalloproteinase-13 refines pathological staging of precancerous colorectal lesions
An exact classification of precancerous stages of colorectal polyps might improve therapy and patients´ outcome. Here we investigate the association between grade of dysplasia and Matrix metalloproteinase-13 (MMP-13) expression in 137 biopsies from patients with cancerous and non-cancerous colorectal adenomas. A reproducible staining procedure for histologic MMP-13 analysis in routinely fixed colorectal biopsy specimens has been established. A newly adopted immunoreactive scoring system for MMP-13 was demonstrated as reliable readout. The strength of the association between pathologic stage and immunoreactive MMP-13 scoring emphasizes its eligibility for diagnosis in precancerous colorectal lesions
Downregulation of plasma MiR-142-3p and MiR-26a-5p in patients with colorectal carcinoma
Background: Colorectal cancer is one of the most commonly diagnosed cancers and cancer- related death worldwide. Identification of new specific biomarkers could be helpful to detection of this malignancy. Altered plasma microRNA expression has been identified in many cancers, including colorectal cancer. Objectives: The main objective of this study was to identify the circulating microRNAs with the most expression changes in colorectal cancer patients compared with neoplasm free healthy individuals. Materials and Methods: MicroRNA expression profiling was performed on plasma samples of 37 colorectal cancer patients and 8 normal subjects using microRNA microarray. Quantitative real-time reverse transcription polymerase chain reaction was used to validate the two selected altered microR NAs. Plasma samples from 61 colorectal cancer patients and 24 normal subjects were used in our validation study. Results: In profiling study we found a panel of six plasma microRNAs with significant downregulation. MicroRNA-142-3p and microRNA-26a-5p were selected and validated by polymerase chain reaction. Our results demonstrated that expression levels of plasma microRNA-142-3p and microRNA-26a-5p were significantly downregulated in patients with colorectal cancer when compared to control group. Conclusions: Our findings suggest that downregulation of plasma microRNA-142-3p and microRNA-26a-5p might serve as novel noninvasive biomarkers in the diagnosis of colorectal cancer, although more studies are needed to highlight the theoretical strengths. © 2015, Iranian Journal of Cancer Prevention
[Prognosis of colorectal cancer and socio-economic inequalities].
It is well established that socio-economic status is a major prognostic factor for many cancers, including colorectal cancer. The aims of this review are (i) to report epidemiological data showing how socio-economic status influences colorectal cancer survival, (ii) to attempt to describe the mechanisms underlying these survival inequalities, and (iii) to assess their impact on survival of colorectal cancer
Does ursodeoxycholic acid change the proliferation of the colorectal mucosa? A randomized, placebo-controlled study
Background: In animal models ursodeoxycholic acid (UDCA) showed a chemoprotective effect against colon cancer. To explain this, a reduced proliferation of the colorectal mucosal proliferation was suggested. We, therefore, examined the influence of UDCA on the proliferation of normal colorectal mucosa in humans. Methods: Following endoscopic polypectomy, 20 patients with colorectal adenomas were randomized to receive either UDCA (750 mg/day, n = 10, group A) or placebo (n = 10, group B) for 6 months in a double-blinded way. Colorectal biopsies were sampled before and at the end of the medication by total colonoscopy. Colorectal mucosal proliferation was measured by FACScan analysis of propidium iodine labeling. Serum was sampled, and serum bile acids were analyzed by gas chromatography. Results: The proliferation rates at the end of the study were similar in both groups (median 15.4%; range 12.0-20.9 in group A; median 16.0%, 14.0-20.2 in group B, p = 0.41). Serum lithocholic acid levels at the end of the study were significantly higher in group A (1.3 mumol/l, 0.9-1.8) than in group B (0.7 mumol/l, 0-1.7, p < 0.02), whereas serum deoxycholic acid levels were similar in both groups. Conclusions: In this study, UDCA treatment for 6 months does not seem to induce changes in the proliferative behavior of the colorectal mucosa in patients with adenomas. It seems likely that a putative chemopreventive effect of UDCA in humans is not exerted by a reduction of the colorectal proliferation. Copyright (C) 2003 S. Karger AG, Basel
Increased prevalence of colorectal adenomas in women with breast cancer
Background: The frequency of colorectal adenomas and carcinomas was investigated in a large cohort of women with breast cancer in comparison with matched controls, since data on the occurrence of second tumors in women with breast cancer is controversial. Design: In a cohort study, 188 consecutive women (median age 57 years) with primary breast cancer and 376 age-matched women who served as controls were examined by total colonoscopy. Breast cancer patients and controls were compared for the frequency of colorectal adenomas and carcinomas. Results: Women with breast cancer showed a higher risk of colorectal adenomas than controls (14.9 vs. 9.3%, p = 0.047, OR 1.7, 95% Cl 1.0-2.9). This increased prevalence resulted primarily from an increased prevalence in the age group 65-85 (31 vs. 10%, p = 0.004, OR 3.8, 95% Cl 1.6-9.3). Colorectal carcinomas were found infrequently in both groups (2 in each group). Women with breast cancer receiving anti-estrogen therapy showed a trend towards a lower risk of adenomas compared to women without anti-estrogen therapy (3.7 vs. 17.2%, p = 0.053, OR 0.16, 95% Cl 0.0-1.1). Conclusions: Women with breast cancer above the age of 65 years have an increased risk of colorectal adenomas compared to women without breast cancer. Women with a diagnosis of breast cancer should especially be encouraged to participate in colorectal cancer-screening programs which, in most countries, call for screening of all average-risk individuals over the age of 50 years
Targeting the tumor microenvironment in colorectal peritoneal metastases
Peritoneal metastasis (PM) occurs in approximately one in four colorectal cancer (CRC) patients. The pathophysiology of colorectal PM remains poorly characterized. Also, the efficacy of current treatment modalities, including surgery and intraperitoneal (IP) delivery of chemotherapy, is limited. Increasingly, therefore, efforts are being developed to unravel the PM cascade and at understanding the PM-associated tumor microenvironment (TME) and peritoneal ecosystem as potential therapeutic targets. Here, we review recent insights in the structure and components of the TME in colorectal PM, and discuss how these may translate into novel therapeutic approaches aimed at re-engineering the metastasis-promoting activity of the stroma
- …
