13,331 research outputs found

    Highly sensitive and label-free digital detection of whole cell E. coli with interferometric reflectance imaging

    Full text link
    Bacterial infectious diseases are a major threat to human health. Timely and sensitive pathogenic bacteria detection is crucial in identifying the bacterial contaminations and preventing the spread of infectious diseases. Due to limitations of conventional bacteria detection techniques there have been concerted research efforts towards development of new biosensors. Biosensors offering label free, whole bacteria detection are highly desirable over those relying on label based or pathogenic molecular components detection. The major advantage is eliminating the additional time and cost required for labeling or extracting the desired bacterial components. Here, we demonstrate rapid, sensitive and label free E. coli detection utilizing interferometric reflectance imaging enhancement allowing for visualizing individual pathogens captured on the surface. Enabled by our ability to count individual bacteria on a large sensor surface, we demonstrate a limit of detection of 2.2 CFU/ml from a buffer solution with no sample preparation. To the best of our knowledge, this high level of sensitivity for whole E. coli detection is unprecedented in label free biosensing. The specificity of our biosensor is validated by comparing the response to target bacteria E. coli and non target bacteria S. aureus, K. pneumonia and P. aeruginosa. The biosensor performance in tap water also proves that its detection capability is unaffected by the sample complexity. Furthermore, our sensor platform provides high optical magnification imaging and thus validation of recorded detection events as the target bacteria based on morphological characterization. Therefore, our sensitive and label free detection method offers new perspectives for direct bacterial detection in real matrices and clinical samples.First author draf

    Magnetic Scanometric DNA Microarray Detection of Methyl Tertiary Butyl Ether Degrading Bacteria for Environmental Monitoring

    Get PDF
    A magnetoresistive biosensing platform based on a single magnetic tunnel junction (MTJ) scanning probe and DNA microarrays labeled with magnetic particles has been developed to provide an inexpensive, sensitive and reliable detection of DNA. The biosensing platform was demonstrated on a DNA microarray assay for quantifying bacteria capable of degrading methyl tertiary butyl ether (MTBE), where concentrations as low as 10 pM were detectable. Synthetic probe bacterial DNA was immobilized on a microarray glass slide surface, hybridized with the 48 base pair long biotinylated target DNA and subsequently incubated with streptavidin-coated 2.8 μm diameter magnetic particles. The biosensing platform then makes use of a micron-sized MTJ sensor that was raster scanned across a 3 mm by 5 mm glass slide area to capture the stray magnetic field from the tagged DNA and extract two dimensional magnetic field images of the microarray. The magnetic field output is then averaged over each 100 μm diameter DNA array spot to extract the magnetic spot intensity, analogous to the fluorescence spot intensity used in conventional optical scanners. The magnetic scanning result is compared with results from a commercial laser scanner and particle coverage optical counting to demonstrate the dynamic range and linear sensitivity of the biosensing platform as a potentially inexpensive, sensitive and portable alternative for DNA microarray detection for field applications

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Development of Optical Biosensor Technologies for Cardiac Troponin Recognition

    Get PDF
    Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4–10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Mechanotransduction of mitochondrial AMPK and its distinct role in flow-induced breast cancer cell migration

    Get PDF
    The biophysical microenvironment of the tumor site has significant impact on breast cancer progression and metastasis. The importance of altered mechanotransduction in cancerous tissue has been documented, yet its role in the regulation of cellular metabolism and the potential link between cellular energy and cell migration remain poorly understood. In this study, we investigated the role of mechanotransduction in AMP-activated protein kinase (AMPK) activation in breast cancer cells in response to interstitial fluid flow (IFF). Additionally, we explored the involvement of AMPK in breast cancer cell migration. IFF was applied to the 3D cell-matrix construct. The subcellular signaling activity of Src, FAK, and AMPK was visualized in real-time using fluorescent resonance energy transfer (FRET). We observed that breast cancer cells (MDA-MB-231) are more sensitive to IFF than normal epithelial cells (MCF-10A). AMPK was activated at the mitochondria of MDA-MB-231 cells by IFF, but not in other subcellular compartments (i.e., cytosol, plasma membrane, and nucleus). The inhibition of FAK or Src abolished flow-induced AMPK activation in the mitochondria of MDA-MB-231 cells. We also observed that global AMPK activation reduced MDA-MB-231 cell migration. Interestingly, specific AMPK inhibition in the mitochondria reduced cell migration and blocked flow-induced cell migration. Our results suggest the linkage of FAK/Src and mitochondria-specific AMPK in mechanotransduction and the differential role of AMPK in breast cancer cell migration depending on its subcellular compartment-specific activation
    • …
    corecore