1,058 research outputs found

    Full Reference Objective Quality Assessment for Reconstructed Background Images

    Full text link
    With an increased interest in applications that require a clean background image, such as video surveillance, object tracking, street view imaging and location-based services on web-based maps, multiple algorithms have been developed to reconstruct a background image from cluttered scenes. Traditionally, statistical measures and existing image quality techniques have been applied for evaluating the quality of the reconstructed background images. Though these quality assessment methods have been widely used in the past, their performance in evaluating the perceived quality of the reconstructed background image has not been verified. In this work, we discuss the shortcomings in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI) that combines color and structural information at multiple scales using a probability summation model to predict the perceived quality in the reconstructed background image given a reference image. To compare the performance of the proposed quality index with existing image quality assessment measures, we construct two different datasets consisting of reconstructed background images and corresponding subjective scores. The quality assessment measures are evaluated by correlating their objective scores with human subjective ratings. The correlation results show that the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets and the corresponding subjective scores provide a benchmark to evaluate the performance of future metrics that are developed to evaluate the perceived quality of reconstructed background images.Comment: Associated source code: https://github.com/ashrotre/RBQI, Associated Database: https://drive.google.com/drive/folders/1bg8YRPIBcxpKIF9BIPisULPBPcA5x-Bk?usp=sharing (Email for permissions at: ashrotreasuedu

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality

    Stereoscopic image quality assessment method based on binocular combination saliency model

    Get PDF
    The objective quality assessment of stereoscopic images plays an important role in three-dimensional (3D) technologies. In this paper, we propose an effective method to evaluate the quality of stereoscopic images that are afflicted by symmetric distortions. The major technical contribution of this paper is that the binocular combination behaviours and human 3D visual saliency characteristics are both considered. In particular, a new 3D saliency map is developed, which not only greatly reduces the computational complexity by avoiding calculation of the depth information, but also assigns appropriate weights to the image contents. Experimental results indicate that the proposed metric not only significantly outperforms conventional 2D quality metrics, but also achieves higher performance than the existing 3D quality assessment models
    corecore