11 research outputs found

    HBONext: An Efficient Dnn for Light Edge Embedded Devices

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Every year the most effective Deep learning models, CNN architectures are showcased based on their compatibility and performance on the embedded edge hardware, especially for applications like image classification. These deep learning models necessitate a significant amount of computation and memory, so they can only be used on high-performance computing systems like CPUs or GPUs. However, they often struggle to fulfill portable specifications due to resource, energy, and real-time constraints. Hardware accelerators have recently been designed to provide the computational resources that AI and machine learning tools need. These edge accelerators have high-performance hardware which helps maintain the precision needed to accomplish this mission. Furthermore, this classification dilemma that investigates channel interdependencies using either depth-wise or group-wise convolutional features, has benefited from the inclusion of Bottleneck modules. Because of its increasing use in portable applications, the classic inverted residual block, a well-known architecture technique, has gotten more recognition. This work takes it a step forward by introducing a design method for porting CNNs to lowresource embedded systems, essentially bridging the difference between deep learning models and embedded edge systems. To achieve these goals, we use closer computing strategies to reduce the computer’s computational load and memory usage while retaining excellent deployment efficiency. This thesis work introduces HBONext, a mutated version of Harmonious Bottlenecks (DHbneck) combined with a Flipped version of Inverted Residual (FIR), which outperforms the current HBONet architecture in terms of accuracy and model size miniaturization. Unlike the current definition of inverted residual, this FIR block performs identity mapping and spatial transformation at its higher dimensions. The HBO solution, on the other hand, focuses on two orthogonal dimensions: spatial (H/W) contraction-expansion and later channel (C) expansion-contraction, which are both organized in a bilaterally symmetric manner. HBONext is one of those versions that was designed specifically for embedded and mobile applications. In this research work, we also show how to use NXP Bluebox 2.0 to build a real-time HBONext image classifier. The integration of the model into this hardware has been a big hit owing to the limited model size of 3 MB. The model was trained and validated using CIFAR10 dataset, which performed exceptionally well due to its smaller size and higher accuracy. The validation accuracy of the baseline HBONet architecture is 80.97%, and the model is 22 MB in size. The proposed architecture HBONext variants, on the other hand, gave a higher validation accuracy of 89.70% and a model size of 3.00 MB measured using the number of parameters. The performance metrics of HBONext architecture and its various variants are compared in the following chapters

    Emergence of Intelligence through Reinforcement Learning with a Neural Network

    Get PDF

    Finite and discrete element modelling of internal erosion in water retention structures

    Get PDF
    Internal erosion is a process by which particles from a soil mass are transported due to an internal fluid flow. This phenomenon is considered as a serious threat to earthen structures. Internal erosion is the main cause of damage or failure in the body or foundation of embankment dams. Therefore, it is necessary to have an accurate knowledge of fluid-particle interactions in saturated soils during design and operation. The hydrodynamic behaviour of porous media in geotechnical engineering is typically modelled using continuum methods such as the finite element method (FEM). It has become increasingly common to combine the discrete element method (DEM) with continuum methods such as the FEM to provide microscopic insights into the behaviour of granular materials and fluid–solid interactions. This Ph.D. thesis aims to develop a hierarchical FEM-DEM algorithm to analyze the internal erosion process in large scale earthen structures. To achieve this goal, we (i) programmed a versatile interface between two FEM and DEM codes, (ii) implemented a coarse-grid method (CGM) for the coupled FEM-DEM model to minimize the computations associated with drag force calculation, (iii) developed a multiscale algorithm for the interface to limit the number of discrete particles involved in the simulation, (iv) assessed the accuracy of drag force derived from CGM, and (v) trained an Artificial Neural Network (ANN) to improve the prediction of the drag force on particles. The development of multimethod or hybrid models combining continuum analyses and discrete elements is a promising research avenue to combine the advantages associated with both modelling scales. This thesis first introduces ICY, an interface between COMSOL Multiphysics (commercial finite-element engine) and YADE (open-source discrete-element code). Through a series of JAVA classes, the interface combines DEM modelling at the particle scale with large scale modelling with the finite element method. ICY was verified with a simple example based on Stokes’ law. A comparison of results for the coupled model and the analytical solution shows that the interface and its algorithm work properly. The thesis also presents an application example for the interface. The interface used CGM drag force to model an internal erosion test in a permeameter. The number of particles that can be included in the DEM simulation of ICY is limited, thus restricting the volume of soil that can be modelled. The second part of the thesis proposes a multimethod hierarchical approach based on ICY to model the coupled hydro-mechanical behaviour for saturated granular soils. A hierarchical algorithm was specifically developed to limit the number of particles in the DEM simulations and to eventually allow the modelling of internal erosion for large structures. The number of discrete bodies in the simulations was restricted through employing discontinuous subdomains along the sample. This avoids generating the full sample as a DEM model. Particles in these small subdomains were subjected to buoyancy, gravity, drag force and contact forces for small time steps. The small subdomains provide the continuum model with particle flux. The FEM model solves a particle conservation equation to evaluate porosity changes for longer time steps. The multimethod framework was verified by simulating a numerical internal erosion test. The fluid motion in geotechnical applications is typically solved using CGM. With these methods, an average form of the Navier–Stokes equations is solved. The total drag force derived from CGM can be applied to the particles proportionally to their volume (CGM-V) or surface (CGM-S). However, there is some uncertainty regarding the application of the CGM drag models for polydispersed particle. The accuracy of CGM has not been systematically investigated through comparing CGM results with more precise results obtained from solving the Navier-Stokes equations at the pore scale. The last part of this research investigates the accuracy of CGM-V and CGM-S drag forces in comparison with the pore-scale values obtained by FEM. COMSOL Multiphysics was used to simulate the fluid flow in three unit cells with different porosity values (0.477, 0.319 and 0.259). The unit cell involved a monosize skeleton of large particles with fixed positions and a smaller particle with variable sizes and positions. The results showed that the CGM-V and CGM-S could not predict precisely the drag force on the small particle. An ANN was trained to predict the drag force on the smaller particle. A very good correlation was found between the ANN output and the FEM results. The ANN could thus provide drag force values with accuracy similar to that obtained using flow simulations at the pore scale, but with computational resources that are comparable to CGM. This thesis contributes to the literature by improving our understanding of hybrid DEM-continuum methods and drag force computations in DEM simulations. It provides guidelines to researchers and developers who try to model internal erosion in real scale soil systems

    Multi-Physics Modeling of Lithium-Ion Battery Electrodes

    Get PDF
    Lithium-ion batteries (LIBs) dominated the market due to their relatively high energy/power density, and long cycle life. However, a multitude of factors need to be addressed which have hindered further development of LIBs such as limited current density and safety issues. One of the effective methodologies to enhance the LIBs energy/power density is to employ alloy-based anode materials with higher theoretical capacity compared with graphite which is the common anode active material in LIBs. For instance, silicon has approximately ten times more capacity than graphite; however, intrinsic issues of silicon, such as high volume change during cycling and an unstable solid-electrolyte interphase (SEI) layer, lead to poor cyclability and cell degradation. One of the common strategies to alleviate the aforementioned silicon challenges is to use a composite graphite/silicon electrode. On one hand, experimental design and optimization of composite electrodes can be time-consuming, and in some cases, such as measuring stress evolution at the particle level of composite electrodes, unfeasible. On the other hand, incorporating multi-physics simulation can shed light on the chemo-mechanical behavior of composite electrodes and provide invaluable insights regarding lithiation-induced stress evolution and ultimately pave the path toward design and optimization of composite electrodes. Moreover, one of the main drawbacks of LIBs is safety concerns because of flammable liquid electrolytes. All-solid-state lithium-ion batteries (ASSBs) are a safer alternative to the conventional liquid electrolyte LIBs. ASSBs are based on utilizing a solid electrolyte to eliminate safety concerns such as thermal runaway and leakage of flammable liquid electrolytes. Additionally, the solid electrolyte can facilitate using high-capacity anode active materials, such as silicon and lithium plate, by inhibiting lithium dendrite formation and suppressing silicon volume expansion during the battery operation. Despite the clear advantages of ASSBs, critical challenges hinder their widespread application, including poor solid electrolyte/solid active material interfacial contact, low ionic conductivity of solid electrolytes, and poor electrochemical stability. Solid electrolyte/active material (SE/AM) interface adversly affects the performance of the ASSBs. Since the two solid phases are not perfectly in contact with each other, void spaces block the ion pathways at the SE/AM interface. Moreover, due to the solid/solid nature of this interface, lithiation-induced stress during the battery operation can cause stress peak points at the interface which leads to crack propagation within the solid electrolyte, loss of contact, and subsequently capacity fade and mechanical degradation. Therefore, ASSB microstructural investigation can enlighten the multi-physics behavior of ASSBs. Using electrode imaging techniques, such as focused ion beam-scanning electron microscopy (FIB-SEM) and X-ray computed tomography (XCT), can accurately capture the microstructures of electrodes. In particular, the XCT method is non-destructive and can provide a quantitative analysis of the electrode morphology such as particle and pore size distribution, porosity, and surface area. Moreover, the XCT reconstructed morphology can be adopted as the multi-physics simulation domain. The modeling framework in this study is comprised of an electrochemical model including conservation of mass/charge and a solid mechanics model based on the thermal-mass analogy to obtain lithiation-induced stress within the electrode microstructure. The presented work aims to adopt the 3D reconstructed morphology of the electrode to study the physical, mechanical, and electrochemical properties of LIBs. In the first study, a multiscale framework was developed and validated for a composite graphite/silicon electrode. The model is an electrochemical-solid mechanics integration used to estimate the composite electrode performance, silicon deformation, and stress evolution. The effects of silicon percentage and current on cell performance, hydrostatic stress, lithium concentration, and deformation are investigated. Considering the effect of stress on the lithium chemical potential within silicon particles in microscale modeling can shed light on the formation of a lithium concentration gradient due to the stress, and thus can enhance the composite electrode model accuracy. Moreover, physical constraints can cause the co-existence of compressive and tensile stress, while lithiation-induced stress inside the silicon particles retard the lithiation process. In fact, lithiation retardation would form a core-shell structure that comprises a lithiated shell and an unlithiated core with an incompatible strain at the interface, causing higher von Mises stress. Physical constraints highly affect the hydrostatic stress formation in silicon particles and may impact the cell life cycle due to the anisotropic swelling of particles. The developed methodology is compatible with different composite electrodes, considers the effect of active material expansion/contraction, and can pave the path for developing physics-based battery state estimation models for composite Si-based electrodes. In the second study, a synchrotron transmission X-ray microscopy tomography system has been utilized to reconstruct the 3D morphology of ASSB electrodes. The electrode was fabricated with a mixture of Li(Ni1/3Mn1/3Co1/3)O2, Li1.3Ti1.7Al0.3(PO4)3, and super-P. For the first time, a 3D numerical multi-physics model was developed to simulate the galvanostatic discharge performance of an ASSB, elucidating the spatial distribution of physical and electrochemical properties inside the electrode microstructure. The 3D model shows a wide distribution of electrochemical properties in the solid electrolyte and the active material which might have a negative effect on ASSB performance. The results show that at high current rates, the void space hinders the ions’ movement and causes local inhomogeneity in the lithium-ion distribution. The simulation results for electrodes fabricated under two pressing pressures reveal that higher pressure decreases the void spaces, leading to a more uniform distribution of lithium-ions in the SE due to more facile lithium-ion transport. The approach in this study is a key step moving forward in the design of 3D ASSBs and sheds light on the physical and electrochemical property distribution in the solid electrolyte, active material, and their interface. In the last study, a chemo-mechanical model was developed for the ASSBs’ composite electrode using the reconstructed morphologies in the second study. This study aimed to shed light on the effects of the electrode microstructure and solid electrolyte/active material interface on the stress evolution during the battery operation. The simulation results show that active material particles encounter compressive hydrostatic stress up to 4 GPa at the solid electrolyte/active material interface during lithiation while solid electrolyte limits their expansion. While, void spaces can partially accommodate active material volume expansion, and areas near void spaces have tensile stress within the range of 0-1 Gpa. Therefore, the electrode with the higher external pressing pressure experiences a relatively higher hydrostatic stress due to a higher solid electrolyte/active material interface and less void space volume fraction. In other words, although increasing the external pressing pressure may alleviate contact resistances and improve the ion pathways, it can intensify lithiation induced stress within the electrode microstructure and causes fracture formation, contact loss, and mechanical degradation. For instance, at the end of lithiation, the von Mises stress in the active material particles is approximately zero while at the surface, AM confronts up to 4.9 GPa stress and the average von Mises stress within the microstructure with higher pressing pressure is 2.4 GPa compared to 1.5 GPa. Thus, microstructural investigation of ASSBs is critical to find an optimal design to maximize the ion pathways and limit the stress evolution within an acceptable range. Integrating the developed multi-physics models with data-driven methods can decrease the computational cost and leads to a holistic modeling framework for LIBs. Incorporating the self-learning feature of data-driven methods can mimic the experimental performance of batteries and predict the behavior of batteries with high fidelity

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Le rôle de l’insula dans la prise de décision risquée : apports de l’évaluation clinique suite à une résection focale unilatérale et de la neuroimagerie fonctionnelle 

    Full text link
    L'insula a longtemps été considérée essentiellement comme une partie du « cerveau viscéral » du fait de son rôle dans le traitement des réponses physiologiques et viscérales. Or, depuis l’avènement de l’imagerie cérébrale fonctionnelle, son implication dans divers aspects du fonctionnement neuropsychologique est devenue bien établie. De plus en plus d’études suggèrent que le cortex insulaire joue un rôle clé dans les circuits responsables de la prise de décision risquée. L’hypothèse des marqueurs somatiques suggère que les émotions influencent nos décisions aux moyens de changements physiologiques internes et viscéraux. Il a été proposé que l'insula participe à la prise de décision risquée en représentant les états somatiques de la situation chargée émotionnellement et en projetant ces informations au cortex préfrontal ventro-médian, constituant ainsi une structure clé dans les circuits responsables de la prise de décision. Les théories actuelles avancent que l’insula serait davantage impliquée dans la prise de risque lorsque l’individu fait face à une perte potentielle plutôt qu'à un gain. Toutefois, bien que plusieurs études supportent un rôle dans le processus décisionnel, la contribution spécifique du cortex insulaire demeure énigmatique. Les études qui composent cette thèse visent à mieux comprendre la façon dont l'insula participe à la prise de risque aux moyens de tâches neuropsychologiques de gambling qui permettent de simuler des situations de prise de décision de la vie quotidienne. La première étude neurocomportementale examine les conséquences d’une résection au cortex insulaire sur la capacité à prendre des décisions face à un risque potentiel, chez des patients épileptiques réfractaires à la médication qui ont subi une résection unilatérale de cette région. Leurs performances à deux tâches de gambling sont comparées à celles d’un groupe de patients ayant subi une chirurgie de l'épilepsie du lobe temporal (épargnant l’insula) et d’un groupe d’individus contrôles en santé. Les résultats mettent en évidence une altération du patron de prise de risque chez les patients avec résection insulaire, qui se traduit par une difficulté à ajuster leur choix en fonction de la valeur attendue (EV) (c’est-à-dire le ratio entre la magnitude et les probabilités des résultats possibles) de l’option risquée en condition de perte. Cette étude appuie l’idée selon laquelle la prise de décision risquée implique différents processus neuronaux selon si le risque implique un gain ou une perte potentielle. La seconde visée de cette thèse porte sur l’évaluation spécifique de la valence, de l’ampleur, de la probabilité et de l’EV de l’option risquée à l’activité insulaire au cours d’une prise de décision. Au moyen de l’imagerie par résonnance magnétique fonctionnelle, l’activité cérébrale d’individus en santé a été enregistrée, alors qu’ils complétaient une tâche de jeu de hasard. Les résultats de l’étude suggèrent un rôle prédominant de l’insula dans l’ajustement des décisions risquées en fonction de l’EV. De plus, l’activité de l’insula pendant la prise de décision était influencée par la sensibilité à la punition des participants. En somme, les données de cette thèse contribuent à une meilleure compréhension du rôle spécifique de l’insula à la prise de décision risquée et conduisent à une réflexion sur l’évaluation neuropsychologique des atteintes insulaires.The insula has long been considered primarily as part of the « visceral brain » because of its role in the treatment of physiological and visceral responses. However, since the advent of functional brain imaging, its involvement in various aspects of neuropsychological functioning has become well established. More and more studies suggest that the insular cortex plays a key role in the circuits responsible for risky decision-making. The somatic marker hypothesis suggests that emotions influence our decisions by means of internal and visceral physiological changes. It has been proposed that the insula participates in risky decision-making by representing the somatic states of the emotionally charged situation and projecting this information to the ventromedian prefrontal cortex, thus constituting a key structure in the circuits responsible for decision. Current theories argue that the insula would be more involved in risk taking when the individual faces a potential loss rather than a gain. However, although several studies support a role in the decision-making process, the specific contribution of the insular cortex remains enigmatic. The studies that make up this thesis aim to better understand how the insula participates in risk taking with neuropsychological tasks of gambling that can simulate decision-making situations of everyday life. The first neurobehavioral study examines the consequences of insular cortex resections on the ability to make decisions about potential risk in drug-refractory epileptic patients who have undergone unilateral resection of this region. Their performance in two gambling tasks is compared to a group of patients who had surgery for temporal lobe epilepsy (sparing the insula) and a group of healthy control. The results highlight an alteration of risk taking in patients with insular resection, which results in difficulty in adjusting their choice according to the expected value (EV) (i.e. the ratio between the magnitude and probabilities of possible outcomes) of the risky option in the loss condition. This study supports the idea that risky decision making involves different neural processes depending on whether the risk involves a potential gain or loss. The second aim of this thesis deals with the specific assessment of the valence, magnitude, probability and EV of the risky option to insula activity during a decision-making process. Using functional magnetic resonance imaging, the brain activity of healthy individuals was recorded as they completed a gambling task. The results of the study suggest a predominant role of the insula in adjusting risky decisions based on EV. In addition, the activity of the insular cortex during decision-making was influenced by the participants' sensitivity to punishment. In sum, the data from this thesis contribute to a better understanding of the specific role of the insula in risky decision-making and lead to a reflection on the neuropsychological evaluation of insular lesions

    Colour and Colorimetry Multidisciplinary Contributions Vol. XIb

    Get PDF
    It is well known that the subject of colour has an impact on a range of disciplines. Colour has been studied in depth for many centuries, and as well as contributing to theoretical and scientific knowledge, there have been significant developments in applied colour research, which has many implications for the wider socio-economic community. At the 7th Convention of Colorimetry in Parma, on the 1st October 2004, as an evolution of the previous SIOF Group of Colorimetry and Reflectoscopy founded in 1995, the "Gruppo del Colore" was established. The objective was to encourage multi and interdisciplinary collaboration and networking between people in Italy that addresses problems and issues on colour and illumination from a professional, cultural and scientific point of view. On the 16th of September 2011 in Rome, in occasion of the VII Color Conference, the members assembly decided to vote for the autonomy of the group. The autonomy of the Association has been achieved in early 2012. These are the proceedings of the English sessions of the XI Conferenza del Colore

    Spatial and temporal processing biases in visual working memory in specific anxiety

    Get PDF
    BACKGROUND.One group of theories aiming at providing a framework explaining the etiology, maintenance and phenomenology of anxiety disorders is classified as cognitive models of anxiety. These approaches assume that distortions in specific levels of information processing are relevant for the onset and maintenance of the disorder. A detailed knowledge about the nature of these distortions would have important implications for the therapy of anxiety, as the implementation of confrontative or cognitive elements precisely fitting the distortions might enhance efficacy. Still, these models and related empirical evidence provide conflicting assumptions about the nature of disorder-linked processing distortions. Many cognitive models of anxiety (e.g., Fox, Russo, & Dutton, 2002; Mathews & Mackintosh, 1998; Williams, Watts, MacLeod, & Mathews, 1997) postulate that anxiety-linked biases of attention imply hypervigilance to threat and distractibility from other stimuli in the presence of feared materials. This is convincingly confirmed by various experimentalclinical studies assessing attention for threat in anxious participants compared to non-anxious controls (for a review, seeMathews &MacLeod, 2005). In contrast, assumptions concerning anxiety-linked biased memory for threat are less convincing; based on the shared tendency for avoidance of deeper elaboration in anxiety disorders, some models predict memory biases only for implicit memory tasks (Williams et al., 1997) or even disclaim the relevance of memory in anxiety at all (e.g., Mogg, Bradley, Miles, & Dixon, 2004). Other theories restrict the possibility of measuring disorder-specific memory biases to tasks that require merely perceptual encoding of the materials instead of verbal-conceptual memory (e.g., Fox et al., 2002; Mathews &Mackintosh, 1998). On the one hand, none of these models has integrated all the inconsistencies in empirical data on the topic. On the other hand, the numerous empirical studies on memory in anxiety that have been conducted with varying materials, anxiety disorders, encoding and retrieval conditions do not allow final conclusions about the prerequisites for finding memory biases (for a review, see MacLeod & Mathews, 2004). A more detailed investigation of the complete spectrum of memory for threat utilizing carefully controlled variations of depth of encoding and materials is needed. In view of these inconsistencies, it is all the more surprising that one important part of this spectrum has so far remained completely uninvestigated: visual working memory (VWM). No study has ever differentially addressed VWM for threat in anxious vs. nonanxious participants and none of the cognitive models of anxiety provides any predictions concerning this stage of information processing. Research on cognitive biases in anxiety has thus far only addressed the two extremes of the processing continuum: attention and longer-term memory. In between, a gap remains, the bridging of which might bring us closer to defining the prerequisites of memory biases in anxiety. As empirical research has provided substantial and coherent knowledge concerning attention in anxiety, and as attention and VWM are so closely linked (see, for instance, Cowan, 1995), the thorough investigation of VWM may provide important clues for models of anxiety. Is anxiety related to VWM biases favoring the processing of threatening information, or does the avoidance presumed by cognitive models of anxiety already begin at this stage? RESEARCH AIMS. To investigate the relevance of biased VWM in anxiety, the present research focused in eight experiments on the following main research questions: (1) Is threat preferably stored in VWM in anxious individuals? (2) Does threat preference occur at the cost of the storage of other items, or is extra storage capacity provided? (3) Would the appearance of threat interrupt ongoing encoding of non-threatening items? (4) Does prioritized encoding of threat in anxiety occur strategically or automatically? (5) Are disorder-specific VWM biases also materials-specific? (6) Are VWM biases in anxiety modifiable through cognitive-behavioral therapy? METHODS. In Experiments 1-4, a spatial-sequential cueing paradigm was used. A subset of real-object display items was successively cued on each trial by a sudden change of the picture background for 150 ms each. After the cueing, one of the display pictures was hidden and probed for a memory test. On most trials, a cued item was tested, and memory accuracy was determined depending on the item’s position within the cue string and depending on its valence. In some cases, memory for an uncued item was tested. Experiment 1 and 2 were directed at discovering whether spider fearfuls and non-anxious controls would differ with respect to the accuracy in memorizing cued spiders and uncued spiders and, thus, reveal disorder-specific biases of VWM. In addition, the question whether the presence of a spider image is related to costs for the memorization of other images was tested. Experiment 3 addressed whether any disorder-specific VWM biases found earlier were specific to the feared spiders. Therefore, the critical stimuli here were a snake and a spider. Participants were spider fearfuls and non-anxious controls, both without snake anxiety. In Experiment 4, it was tested whether disorder-specific biases found in Experiment 1 and 2 were modifiable through cognitive-behavioral treatment. The critical stimulus was a spider image. Spider fearfuls were tested three times. Half of them received a cognitive-behavioral intervention after the first test, the other half only after the second test. In two additional experiments, VWM was assessed with a change-detection paradigm. The main aim was to clarify whether disorder-specific effects found in the previous experiments were associated with automatic or with strategic selective encoding of threatening materials, and whether any group differences in spider change detection were materials-specific to spiders, but not to snakes. In Experiment 5, several images were presented simultaneously in a study display for either 100 or 500 milliseconds. After a short interruption, a test display was presented including either the same items as the first one or one changed item. Participants’ accuracy in determining whether displays were the same or different was measured depending on the valence of the changed item, set size, and presentation time of the display. There were trials with and without spiders. If a change was made, it could involve either a non-spider or a spider item. Of specific interest was the condition in which a spider image was presented initially, but not in the test phase, as noticing this specific change would require storage of that image in VWM. Would group differences be particularly pronounced in the shorter encoding condition suggesting automatic encoding of threat, or would they occur in the longer encoding condition, suggesting strategic encoding of spiders? In Experiment 6, change detection accuracy for spiders vs. snakes was tested. The participants in both experiments were spider fearfuls vs. controls, but those of Experiment 6 were additionally required to lack snake anxiety. Moreover, a temporal VWM paradigm - an attentional blink task - was applied to assess whether a biased encoding of spider images in spider fearfuls would occur at the expense of non-threatening items undergoing concurrent processing, and whether this effect was specific to spiders, but not to snakes. Series of real-object pictures were presented at rates of 80 ms at the display center. The observer’s task was to identify and report the two target pictures indicated by a brighter background. In Experiment 7, the first target always depicted a neutral item. The valence of the second target was varied - either negative depicting a spider, positive, or neutral. Participants varied with respect to their spider anxiety. In Experiment 8, spider fearfuls and non-anxious controls, both without snake anxiety, were tested. The experiment was nearly the same as the previous one, but two negative target types were tested: disorder-relevant spiders and negative but not feared snakes. Of specific interest was whether the appearance of a threatening target would reduce the report probability of the earlier attended target, indicating the interruption of its VWM encoding in favor of the threat item. RESULTS. (1) Both anxious and non-anxious controls, showed VWM advantages for negative materials such as spider or snake images. (2) In addition, there were disorderspecific VWM biases: some effects were larger in spider fearfuls than in non-anxious controls and some effects occurred exclusively in spider fearfuls. (3) Group differences and, thus, disorder-specificity were particularly pronounced under competitive circumstances, that is, under the condition of numerous stimuli competing for processing resources: when only little orientation time was allowed, when only little time was provided for selecting and encoding items from a crowd, and when VWMfor the critical item required reflexive instead of voluntary attention. (4) Pronounced memory for task-relevant, voluntarily attended spiders was related to difficulties in disengaging attention from these items in the fearful group, reflected in reduced memory accuracy for the item following it. (5) Disorder-specific VWM biases seem to be based on attentional biases to threatening materials resulting in a very quick, automatic memory consolidation. However, this preferential encoding was not at the cost of neutral materials currently undergoing encoding processes. (6) All disorder-specific VWM biases occured only with fear-related materials, not with other negative materials. (7) Automatic and highly disorder-specific fear-related VWM biases – but not strategic VWM biases occuring in both groups - were modifiable through cognitive-behavioral intervention. CONCLUSIONS. This work provides additional information about informationprocessing distortions related to specific anxiety. With the experimental investigation of biased VWM, this work has been performed to fill a gap within research on cognitive biases in anxiety. Moreover, this dissertation contributes to cognitive theories of anxiety by proposing several recommendations for refinements of current theoretical approaches. Most important, it was suggested to extend existing models by a more detailed consideration of attention and memory. In view of numerous previous empirical studies on the topic and the conclusions of this dissertation, a differentiation of the attentional engagement and disengagement component appears inevitable. Even more important, in view of the data presented here predictions concerning VWM for threatening materials need to be taken into account. In addition, suggestions are provided for the differential consideration of biases occuring from prepotent threat value of negative stimuli vs. individual threat value. A proposal for a cognitive model of anxiety extended by all these aspects is provided to serve as an invitation of further research in the investigation of the nature of memory biases in anxiety disorders. REFERENCES: Cowan, N. (1995). Attention and Memory. An integrated framework.New York: Oxford University Press. Fox, E., Russo, R., & Dutton, K. (2002). Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cognition and Emotion, 16, 355-379. MacLeod, C., & Mathews, A. (2004). Selective memory effects in anxiety disorders: An overview of research findings and their implications. In D. Reisberg & P. Hertel (eds.), Memory and Emotion. Oxford: Oxford University Press. Mathews, A., & Mackintosh, B. (1998). A cognitive model of selective processing in anxiety. Cognitive Therapy and Research, 22 (6), 539-560. Mathews, A., & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1, 167-195.Mathews, Mogg, May, & Eysenck (1989). Mogg, K., Bradley, B.P., Miles, F., & Dixon, R. (2004). Time course of attentional bias for threat scenes: Testing the vigilance avoidance hypothesis. Cognition and Emotion, 18(5), 689-700. Williams, J.M.G., Watts, F.N., MacLeod, C., & Mathews, A. (1997). Cognitive psychology and emotional disorders. Chichester: John Wiley

    URBAN CORPORIS X - UNEXPECTED

    Get PDF
    Starting from the emergency provoked by the Sars-Cov2 that affected the whole world, the book brings the contributions of researchers and artists from all over the world discussing the theme of the \u201cunexpected\u201d, its implication, and inter-action with everyday life. The book presents a series of essays divided into three parts: Living unexpectedly, Missing interactions, and Different sociality. These three categories bring together authors who have had a reading of the unexpected emergency that occurred, pointing out different perspectives upon dynamics and relation caused by this situation, underlining how the isolation period has affected both the domestic and the urban sphere. Moreover, through drawings, photomontages and photographs, several authors gave a visual interpretation of the changed lives, spaces, and routines. All these contributions don\u2019t want to answer to the enormous problems brought by the pandemic. Rather they synthesize an interpretation of the shifting condition that occurred, showing both the great reactive capacity and the fragility of the no longer present reality

    7.2 10th Anniversary – Part Two

    Get PDF
    corecore