3,785 research outputs found

    Variational Disparity Estimation Framework for Plenoptic Image

    Full text link
    This paper presents a computational framework for accurately estimating the disparity map of plenoptic images. The proposed framework is based on the variational principle and provides intrinsic sub-pixel precision. The light-field motion tensor introduced in the framework allows us to combine advanced robust data terms as well as provides explicit treatments for different color channels. A warping strategy is embedded in our framework for tackling the large displacement problem. We also show that by applying a simple regularization term and a guided median filtering, the accuracy of displacement field at occluded area could be greatly enhanced. We demonstrate the excellent performance of the proposed framework by intensive comparisons with the Lytro software and contemporary approaches on both synthetic and real-world datasets

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Calibration and removal of lateral chromatic aberration in images

    Get PDF
    This paper addresses the problem of compensating for lateral chromatic aberration in digital images through colour plane realignment. Two main contributions are made: the derivation of a model for lateral chromatic aberration in images, and the subsequent calibration of this model from a single view of a chess pattern. These advances lead to a practical and accurate alternative for the compensation of lateral chromatic aberrations. Experimental results validate the proposed models and calibration algorithm. The effects of colour channel correlations resulting from the camera colour filter array interpolation is examined and found to have a negligible magnitude relative to the chromatic aberration. Results with real data show how the removal of lateral chromatic aberration significantly improves the colour quality of the image
    corecore