608 research outputs found

    Cognitive dimensions of talim: evaluating weaving notation through cognitive dimensions (CDs) framework

    Get PDF
    The design process in Kashmiri carpet weaving is distributed over a number of actors and artifacts and is mediated by a weaving notation called talim. The script encodes entire design in practice-specific symbols. This encoded script is decoded and interpreted via design-specific conventions by weavers to weave the design embedded in it. The cognitive properties of this notational system are described in the paper employing cognitive dimensions (CDs) framework of Green (People and computers, Cambridge University Press, Cambridge, 1989) and Blackwell et al. (Cognitive technology: instruments of mind—CT 2001, LNAI 2117, Springer, Berlin, 2001). After introduction to the practice, the design process is described in ‘The design process’ section which includes coding and decoding of talim. In ‘Cognitive dimensions of talim’ section, after briefly discussing CDs framework, the specific cognitive dimensions possessed by talim are described in detail

    PCA and K-Means decipher genome

    Full text link
    In this paper, we aim to give a tutorial for undergraduate students studying statistical methods and/or bioinformatics. The students will learn how data visualization can help in genomic sequence analysis. Students start with a fragment of genetic text of a bacterial genome and analyze its structure. By means of principal component analysis they ``discover'' that the information in the genome is encoded by non-overlapping triplets. Next, they learn how to find gene positions. This exercise on PCA and K-Means clustering enables active study of the basic bioinformatics notions. Appendix 1 contains program listings that go along with this exercise. Appendix 2 includes 2D PCA plots of triplet usage in moving frame for a series of bacterial genomes from GC-poor to GC-rich ones. Animated 3D PCA plots are attached as separate gif files. Topology (cluster structure) and geometry (mutual positions of clusters) of these plots depends clearly on GC-content.Comment: 18 pages, with program listings for MatLab, PCA analysis of genomes and additional animated 3D PCA plot

    Protecting Information with Subcodstanography

    Get PDF
    In modern communication systems, one of the most challenging tasks involves the implementation of adequate methods for successful and secure transfer of confidential digital information over an unsecured communication channel. Many encryption algorithms have been developed for protection of confidential information. However, over time, flaws have been discovered even with the most sophisticated encryption algorithms. Each encryption algorithm can be decrypted within sufficient time and with sufficient resources. The possibility of decryption has increased with the development of computer technology since available computer speeds enable the decryption process based on the exhaustive data search. This has led to the development of steganography, a science which attempts to hide the very existence of confidential information. However, the stenography also has its disadvantages, listed in the paper. Hence, a new method which combines the favourable properties of cryptography based on substitution encryption and stenography is analysed in the paper. The ability of hiding the existence of confidential information comes from steganography and its encryption using a coding table makes its content undecipherable. This synergy greatly improves protection of confidential information
    corecore