935 research outputs found

    An adaptive palette reordering method for compressing color-indexed image

    Get PDF
    Center for Multimedia Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    An adaptive palette reordering method for compressing color-indexed image

    Full text link

    A lossless coding scheme for encoding color-indexed video sequences

    Get PDF
    Centre for Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Animated GIF optimization by adaptive color local table management

    Full text link
    After thirty years of the GIF file format, today is becoming more popular than ever: being a great way of communication for friends and communities on Instant Messengers and Social Networks. While being so popular, the original compression method to encode GIF images have not changed a bit. On the other hand popularity means that storage saving becomes an issue for hosting platforms. In this paper a parametric optimization technique for animated GIFs will be presented. The proposed technique is based on Local Color Table selection and color remapping in order to create optimized animated GIFs while preserving the original format. The technique achieves good results in terms of byte reduction with limited or no loss of perceived color quality. Tests carried out on 1000 GIF files demonstrate the effectiveness of the proposed optimization strategy

    Colored fused filament fabrication

    Full text link
    Fused filament fabrication is the method of choice for printing 3D models at low cost and is the de-facto standard for hobbyists, makers, and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating controlled gradients of varying sharpness. Our technique exploits off-the-shelves nozzles that are designed to mix multiple filaments in a small melting chamber, obtaining intermediate colors once the mix is stabilized. We apply this property to produce color gradients. We divide each input layer into a set of strata, each having a different constant color. By locally changing the thickness of the stratum, we change the perceived color at a given location. By optimizing the choice of colors of each stratum, we further improve quality and allow the use of different numbers of input filaments. We demonstrate our results by building a functional color printer using low cost, off-the-shelves components. Using our tool a user can paint a 3D model and directly produce its physical counterpart, using any material and color available for fused filament fabrication

    Lossless Compression of Color Palette Images with One-Dimensional Techniques

    Get PDF
    Palette images are widely used on the World Wide Web (WWW) and in game-cartridge applications. Many images used on the WWW are stored and transmitted after they are compressed losslessly with the standard graphics interchange format (GIF), or portable network graphics (PNG). Well-known 2-D compression schemes, such as JPEG-LS and JPEG-2000, fail to yield better compression than GIF or PNG due to the fact that the pixel values represent indices that point to color values in a look-up table. To improve the compression performance of JPEG-LS and JPEG-2000 techniques, several researchers have proposed various reindexing algorithms. We investigate various compression techniques for color palette images. We propose a new technique comprised of a traveling salesman problem (TSP)-based reindexing scheme, Burrows-Wheeler transformation, and inversion ranks. We show that the proposed technique yields better compression gain on average than all the other 1-D compressors and the reindexing schemes that utilize JPEG-LS or JPEG-2000
    corecore