3 research outputs found

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Color Consistency and Local Contrast Enhancement for a Mobile Image-Based Change Detection System

    No full text
    Mobile change detection systems allow for acquiring image sequences on a route of interest at different time points and display changes on a monitor. For the display of color images, a processing approach is required to enhance details, to reduce lightness/color inconsistencies along each image sequence as well as between corresponding image sequences due to the different illumination conditions, and to determine colors with natural appearance. We have developed a real-time local/global color processing approach for local contrast enhancement and lightness/color consistency, which processes images of the different sequences independently. Our approach combines the center/surround Retinex model and the Gray World hypothesis using a nonlinear color processing function. We propose an extended gain/offset scheme for Retinex to reduce the halo effect on shadow boundaries, and we employ stacked integral images (SII) for efficient Gaussian convolution. By applying the gain/offset function before the color processing function, we avoid color inversion issues, compared to the original scheme. Our combined Retinex/Gray World approach has been successfully applied to pairs of image sequences acquired on outdoor routes for change detection, and an experimental comparison with previous Retinex-based approaches has been carried out
    corecore