2 research outputs found

    Shape analysis in shape space

    Get PDF
    This study aims to classify different deformations based on the shape space concept. A shape space is a quotient space in which each point corresponds to a class of shapes. The shapes of each class are transformed to each other by a transformation group preserving a geometrical property in which we are interested. Therefore, each deformation is a curve on the high dimensional shape space manifold, and one can classify the deformations by comparison of their corresponding deformation curves in shape space. Towards this end, two classification methods are proposed. In the first method, a quasi conformal shape space is constructed based on a novel quasi-conformal metric, which preserves the curvature changes at each vertex during the deformation. Besides, a classification framework is introduced for deformation classification. The results on synthetic and real datasets show the effectiveness of the metric to estimate the intrinsic geometry of the shape space manifold, and its ability to classify and interpolate different deformations. In the second method, we introduce the medial surface shape space which classifies the deformations based on the medial surface and thickness of the shape. This shape space is based on the log map and uses two novel measures, average of the normal vectors and mean of the positions, to determine the distance between each pair of shapes on shape space. We applied these methods to classify the left ventricle deformations. The experimental results shows that the first method can remarkably classify the normal and abnormal subjects but this method cannot spot the location of the abnormality. In contrast, the second method can discriminate healthy subjects from patients with cardiomyopathy, and also can spot the abnormality on the left ventricle, which makes it a valuable assistant tool for diagnostic purposes

    Registration of prone and supine CT colonography images and its clinical application

    Get PDF
    Computed tomographic (CT) colonography is a technique for detecting bowel cancer and potentially precancerous polyps. CT imaging is performed on the cleansed and insufflated bowel in order to produce a virtual endoluminal representation similar to optical colonoscopy. Because fluids and stool can mimic pathology, images are acquired with the patient in both prone and supine positions. Radiologists then match endoluminal locations visually between the two acquisitions in order to determine whether pathology is real or not. This process is hindered by the fact that the colon can undergo considerable deformation between acquisitions. Robust and accurate automated registration between prone and supine data acquisitions is therefore pivotal for medical interpretation, but a challenging problem. The method proposed in this thesis reduces the complexity of the registration task of aligning the prone and supine CT colonography acquisitions. This is done by utilising cylindrical representations of the colonic surface which reflect the colon's specific anatomy. Automated alignment in the cylindrical domain is achieved by non-rigid image registration using surface curvatures, applicable even when cases exhibit local luminal collapses. It is furthermore shown that landmark matches for initialisation improve the registration's accuracy and robustness. Additional performance improvements are achieved by symmetric and inverse-consistent registration and iteratively deforming the surface in order to compensate for differences in distension and bowel preparation. Manually identified reference points in human data and fiducial markers in a porcine phantom are used to validate the registration accuracy. The potential clinical impact of the method has been evaluated using data that reflects clinical practise. Furthermore, correspondence between follow-up CT colonography acquisitions is established in order to facilitate the clinical need to investigate polyp growth over time. Accurate registration has the potential to both improve the diagnostic process and decrease the radiologist's interpretation time. Furthermore, its result could be integrated into algorithms for improved computer-aided detection of colonic polyps
    corecore